

NoiseModelling v4.0 User Guide

[image: _images/NoiseModelling_banner.png]

Welcome on the official NoiseModelling v4.0 User Guide.

NoiseModelling is a library capable of producing noise maps.
It can be freely used either for research and education, as well as by experts in a professional use.

A general overview of the model (v3.4.5 - September 2020) can be found in this video [https://www.youtube.com/watch?v=V1-niMT9cYE&t=1s].

	for more information on NoiseModelling, visit the offical NoiseModelling website [http://noise-planet.org/noisemodelling.html]

	to contribute to NoiseModelling source code, follow the “Get Started” page

	
	to contact the support / development team,

	
	open an issue [https://github.com/Universite-Gustave-Eiffel/NoiseModelling/issues] or a write a message [https://github.com/Universite-Gustave-Eiffel/NoiseModelling/discussions] (we prefer these two options)

	send us an email at contact@noise-planet.org

What’s new with the V4.0?

Since the release v4.0, NoiseModelling implements the CNOSSOS-EU [https://publications.jrc.ec.europa.eu/repository/handle/JRC72550] standard method for the noise emission (road and rail (for France)) and with noise propagation (read “Numerical Model” and “Validation” pages for more information).

Optimizations

	H2 [https://www.h2database.com/] and H2GIS [https://www.h2gis.org/] versions have been upgraded (respectively to v2.0.202 and v2.0.0)

	Triangulation library Poly2Tri [https://github.com/jhasse/poly2tri] has been replaced by Tinfoor [https://github.com/gwlucastrig/Tinfour]

	Triangulation to accelerate the propagation is not used anymore (only used in DEM intersections test)

Packaging

On the NoiseModelling latest release page [https://github.com/Universite-Gustave-Eiffel/NoiseModelling/releases/latest], three packages of NoiseModelling are proposed:

	NoiseModelling_4.0.0.zip : cross-platform version, with GUI (Graphic User Interface)

	NoiseModelling_4.0.0_install.exe : windows installer, with GUI

	NoiseModelling_4.0.0_without_gui.zip : version without GUI. Usefull to run NoiseModelling using command lines (read “Pilot NoiseModelling with scripts” page for more info)

Authors

NoiseModelling project is leaded by acousticians from the Joint Research Unit in Environmental Acoustics (UMRAE [https://www.umrae.fr/], Université Gustave Eiffel - Cerema) and Geographic Information Science specialists from Lab-STICC [https://labsticc.fr] laboratory (CNRS - DECIDE Team).

The NoiseModelling team owns the majority of the authorship of this application, but any external contributions are warmly welcomed.

Licence

NoiseModelling and its documentation are distributed for free under GPL v3 License.

Publications

NoiseModelling was initially developed in a research context, which has led to numerous scientific publications. For more information, have a look to “Scientific production” page.
To quote this tool, please use the bibliographic reference below:

Note

Erwan Bocher, Gwenaël Guillaume, Judicaël Picaut, Gwendall Petit, Nicolas Fortin. NoiseModelling: An Open Source GIS Based Tool to Produce Environmental Noise Maps. ISPRS International Journal of Geo-Information, MDPI, 2019, 8 (3), pp.130. (10.3390/ijgi8030130 [https://www.mdpi.com/2220-9964/8/3/130])

Fundings

Research projects:

	ANR Eval-PDU [https://anr.fr/Projet-ANR-08-VILL-0005] (ANR-08-VILL-0005) 2008-2011

	ANR VegDUD [https://anr.fr/Projet-ANR-09-VILL-0007] (ANR-09-VILL-0007) 2009-2014

	ANR CENSE [https://anr.fr/Projet-ANR-16-CE22-0012] (ANR-16-CE22-0012) 2017-2021

	Nature4cities [https://www.nature4cities.eu/] (N4C) project, funded by European Union’s Horizon 2020 research and innovation programme under grant agreement N°730468

	PlaMADE [https://www.cerema.fr/fr/projets/plamade-plate-forme-mutualisee-aide-au-diagnostic] 2020-2022

Institutional (public) fundings:

	Université Gustave Eiffel [https://www.univ-gustave-eiffel.fr/] (formerly Ifsttar, formerly LCPC), CNRS [https://www.cnrs.fr], Cerema [https://www.cerema.fr/], Université Bretagne Sud [https://www.univ-ubs.fr/], Ecole Centrale de Nantes [https://www.ec-nantes.fr/]

Private fundings:

	Airbus Urban Mobility

Warning

	The official documentation is available in English only

	Some illustrations may refer to previous versions of NoiseModelling

	If you observe some mistakes or errors, please open an issue here [https://github.com/Universite-Gustave-Eiffel/NoiseModelling/issues] or contact us at contact@noise-planet.org

	You are also welcome to contribute to the documentation (click on “Edit on Github” - top of the page)

NoiseModelling presentation

	Architecture
	1. NoiseModelling libraries

	2. Database connection

	3. NoiseModelling with a GUI

	4. NoiseModelling with command lines

	5. Docker Setup

	Numerical Model
	Emission Numerical Model

	Path finding algorithm

	Propagation Numerical Model

	Validation
	Acoustic model validation

	Implementation validation

	Scientific production
	Standard Noise maps

	Dynamic Noise maps

	Probabilistic & Multi-sources Noise maps

	Sensitivity Analysis & data assimilation

	Auralisation

Input tables & parameters

	Buildings

	Roads

	Railways

	Ground surfaces

	DEM

	Directivity

	Receivers

	Acoustic parameters

Tutorials

	Requirements
	Java environment

	Get Started - GUI
	Step 1: Download NoiseModelling

	Step 2: Start NoiseModelling GUI

	Step 3: Open NoiseModelling GUI

	Step 4: Load input files

	Step 5: Run Calculation

	Step 6: Export (& see) the results

	Step 7: Know the possibilities

	Noise Map from OSM - GUI
	Prerequisites

	Step 1: Get OSM data

	Step 2: Visualize OSM data

	Step 3: Generate a Receiver table

	Step 4: Associate emission noise level with roads

	Step 5: Source to Receiver Propagation

	Step 6: Create Isosurfaces map

	Step 7: View the result

	Noise Map from Point Source - GUI
	Step 1: Create the source point

	Step 2: Import input data in NoiseModelling

	Step 3: Generate the noise map

	Step 4: Change the default parameters

	Step 5 (bonus): Change the directivity

	MATSim - GUI
	Introduction

	Prerequisites

	The data

	Step 1 : Import Buildings

	Step 2 : Import MATSim Traffic Data

	Step 3 : Import MATSim Activities

	Step 4 : Assign a Receiver to each Activity

	Step 5 : Calculate Noise Attenuation Matrix

	Step 6 : Calculate Noise Maps

	Visualization

	Pilot NoiseModelling with scripts
	Requirements

	1. Simple command line

	2. Bash script

	3. Groovy script

	Tutorials - FAQ
	Shapefiles or GeoJSON?

	PostGreSQL or H2?

	OSM

	Metric SRID

	Primary Key

User Interface

	WPS Blocks
	WPS general presentation

	NoiseModelling and WPS

	Create your own WPS block

	WPS Builder
	What is WPS Builder ?

	Frequently Asked Question

For Advanced Users

	Create your own WPS block
	Presentation

	General Structure

	Access NoiseModelling database
	Introduction

	1. Use WPS blocks

	2. Use H2/H2GIS web client

	3. Use DBeaver client

	Use NoiseModelling with a PostGIS database
	Introduction

	Connect with Java

For Developers

	Get Started

Appendices

	Noise Map Color Scheme
	Introduction

	French NF S31-130

	German DIN 18005-2:1991

	Italian Normativa tecnica UNI 9884

	Coloring Noise

	Create your own .SLD file

	Support

	License

	Glossary

Indices and tables

	Index

	Module Index

	Search Page

Architecture

NoiseModelling is the name of the application that allows to calculate noise maps (notably through a Graphical User Interface).
But did you know that it is also the name of different calculation libraries?

The documentation below presents the architecture of NoiseModelling with its different bricks and the ways to launch it:

	NoiseModelling libraries

	Database connection

	NoiseModelling with a Graphical User Interface (GUI)

	NoiseModelling with command line

	NoiseModelling with Docker

[image: _images/architecture.png]

1. NoiseModelling libraries

NoiseModelling is made of 4 main librairies [https://github.com/Ifsttar/NoiseModelling]:

	noisemodelling-emission : to determine the noise emission

	noisemodelling-pathfinder : to determine the noise path

	noisemodelling-propagation : to calculate the noise propagation

	noisemodelling-jdbc : to connect NoiseModelling to a database

These libraries may be used independently of each other. Note that the noisemodelling-jdbc library (JDBC = Java DataBase Connectivity) is central since it allows the three others to communicate with each other as soon as the data are stored in a database (which is the default situation).

2. Database connection

Thanks to the noisemodelling-jdbc library, NoiseModelling can access and communicate with databases. This system is quite adapted to store, manage and process (spatial) data. Here, the user has the choice between to database (free, open-source and powerful) couples:

	H2 [https://www.h2database.com] / H2GIS [http://www.h2gis.org/], which is configured and embeded by default. In this case, the user has nothing to do.

	PostGreSQL [https://www.postgresql.org/] / PostGIS [https://postgis.net/]. In this case, the user has to configure the connexion (read “Use NoiseModelling with a PostGIS database” page for more information).

In both cases, database can be local or remote.

3. NoiseModelling with a GUI

NoiseModelling has a Graphical User Interface (GUI). It is accessible through a web browser (here http://localhost:9580/geoserver/web/) and is generated by a module named “WPS Builder”.

In order for “WPS Builder” to communicate with the NoiseModelling libraries, we use a ‘bridge’ named GeoServer [http://geoserver.org/]. This free and open-source software, allows (among other cool things) to execute WPS* scripts, written in Groovy [http://www.groovy-lang.org/] language, via HTTP requests.

* Web Processing Service [https://www.ogc.org/standards/wps], which is a standard from the Open Geospatial Consortium (OGC [https://www.ogc.org/]).

Note

When launching NoiseModelling, Geoserver is started first. In your terminal, you will have a lot of log messages. Most of them are coming from Geoserver and are not directly linked to NoiseModelling. Unfortunately, we can not remove them.

You can see NoiseModelling with a GUI in action in the page “Get Started - GUI”.

4. NoiseModelling with command lines

You can use NoiseModelling with command lines. To do so,

	Open a terminal

	Go in the NoiseModelling directory

	Call the WPS .groovy script you want, with the needed arguments

Note

The .groovy script may be simple (the ones already provided with NoiseModelling, executing one task) or complex (tailor made by users and calling one or many .groovy script(s)).

Note

No need to launch / start the application as we do with Geoserver. Here the NoiseModelling libraries are called directly for each instructions.

Examples can be found in the page “Pilot NoiseModelling with scripts”.

5. Docker Setup

When a developer uses Docker [https://www.docker.com/], he creates an application or service, which he then bundles together with the associated dependencies in a container image. An image is a static representation of the application or service, its configuration and dependencies.

Available versions

The Docker images listed below have been built by NoiseModelling contributors / users. Many thanks to them!

	v4.0.1 image [https://hub.docker.com/r/xenotech/noisemodelling], built by Alexander (Aka “Xenotech81 [https://github.com/Xenotech81]”)

	v3.4.4 image [https://github.com/tomasanda/docker-noisemodelling], built by Tomáš Anda (Aka “tomasanda [https://github.com/tomasanda]”)

Numerical Model

Emission Numerical Model

Road traffic emission model

The emission model of the implemented road traffic is the CNOSSOS-EU [https://circabc.europa.eu/sd/a/9566c5b9-8607-4118-8427-906dab7632e2/Directive_2015_996_EN.pdfde] model.

User can choose coefficients from the Directive 2015/996 and its amendment 2019/1010.

Rail traffic emission model

The emission model of the implemented rail traffic is the CNOSSOS-EU [https://circabc.europa.eu/sd/a/9566c5b9-8607-4118-8427-906dab7632e2/Directive_2015_996_EN.pdfde] model.

Only french database, from SNCF, is implemented.

Without emission model

User can also add directly its own emission sound power level (LW).

Path finding algorithm

The path finding algorithm is a rubber-band like algorithm as specified in CNOSSOS-EU [https://circabc.europa.eu/sd/a/9566c5b9-8607-4118-8427-906dab7632e2/Directive_2015_996_EN.pdfde].

To optimize the processing time, this algorithm is taking benefit from a R-Tree spatial partioning algorithm.

Warning

Rays backwards to the source or receiver are not taken into account. For example, if a receiver is located inside a U-shaped building, only diffractions on horizontal edges will be taken into account.

[image: _images/ray_tracing.png]

Propagation Numerical Model

The propagation model is the CNOSSOS-EU [https://circabc.europa.eu/sd/a/9566c5b9-8607-4118-8427-906dab7632e2/Directive_2015_996_EN.pdfde] one.

Validation

Acoustic model validation

Please refer to CNOSSOS-EU [https://circabc.europa.eu/sd/a/9566c5b9-8607-4118-8427-906dab7632e2/Directive_2015_996_EN.pdfde] papers, or other scientific papers, which are independant from NoiseModelling.

Some limits are given in the CNOSSOS-EU documents below:

Note

Source : Stylianos Kephalopoulos, Marco Paviotti, Fabienne Anfosso-Lédée. Common noise assessment methods in Europe (CNOSSOS-EU) [https://hal.archives-ouvertes.fr/hal-00985998/document]. PUBLICATIONS OFFICE OF THE EUROPEAN UNION, p.75/180 2012,10.2788/31776

	Height receivers must be > 2m

	Propagation distance must be < 800 m

	Downward‐refraction/ homogeneous are taken into acount

	63 Hz to 4 000 Hz – center band

	Breakdown of the infrastructures into point sources

	Does not apply to propagation scenarios above a water body (lake, wide river, etc.).

	The effects of tunnel mouths are not dealt with by the method.

	This method considers obstacles to be equivalent to flat surfaces.

Note

Source : https://circabc.europa.eu/sd/a/9566c5b9-8607-4118-8427-906dab7632e2/Directive_2015_996_EN.pdfde

This document specifies a method for calculating the attenuation of noise during its outdoor propagation.
Knowing the characteristics of the source, this method predicts the equivalent continuous sound pressure level at a receiver point corresponding to two particular types of atmospheric conditions:

	downward-refraction propagation conditions (positive vertical gradient of effective sound celerity) from the source to the receiver

	homogeneous atmospheric conditions (null vertical gradient of effective sound celerity) over the entire area of propagation.

The method of calculation described in this document applies to industrial infrastructures and land transport infrastructures. It therefore applies in particular to road and railway infrastructures. Aircraft transport is included in the scope of the method only for the noise produced during ground operations and excludes take-off and landing.

Industrial infrastructures that emit impulsive or strong tonal noises as described in ISO 1996-2:2007 do not fall within the scope of this method.

The method of calculation does not provide results in upward-refraction propagation conditions (negative vertical gradient of effective sound speed) but these conditions are approximated by homogeneous conditions when computing Lden.

To calculate the attenuation due to atmospheric absorption in the case of transport infrastructure, the temperature and humidity conditions are calculated according to ISO 9613-1:1996.

The method provides results per octave band, from 63 Hz to 8 000 Hz. The calculations are made for each of the centre frequencies.

Partial covers and obstacles sloping, when modelled, more than 15° in relation to the vertical are out of the scope of this calculation method.

A single screen is calculated as a single diffraction calculation, two or more screens in a single path are treated as a subsequent set of single diffractions by applying the procedure described further.

Implementation validation

A large set of unit tests are present in the code [https://github.com/Ifsttar/NoiseModelling/]. Please consult an example dealing with CNOSSOS-EU here [https://github.com/Ifsttar/NoiseModelling/blob/4.X/noisemodelling-jdbc/src/test/java/org/noise_planet/noisemodelling/jdbc/EvaluateAttenuationCnossosTest.java].

Note that all the tests entilted TCxx (see example [https://github.com/Ifsttar/NoiseModelling/blob/621ec99568ac14d72ef78557cfc2ee910a72c138/noisemodelling-jdbc/src/test/java/org/noise_planet/noisemodelling/jdbc/EvaluateAttenuationCnossosTest.java#L453]) are coming from the ISO/TR 17534-4:2020 [https://www.iso.org/standard/72115.html] standard , which has been implemented in NoiseModelling.

Scientific production

Below is a non-exhaustive list of articles or presentations in which NoiseModelling is used.

Standard Noise maps

BACLET S., VENKATARAMAN S., RUMPLER R., BILLSJÖ R., HORVATH J., ÖSTERLUND P. E., , From strategic noise maps to receiver-centric noise exposure sensitivity mapping [https://www.sciencedirect.com/science/article/pii/S1361920921004089], Transportation Research Part D: Transport and Environment, 2022, vol. 102 (Noise mapping, Road traffic noise, Population exposure, Road network sensitivity)

GRAZIUSO G., FRANCAVILLA A. B., MANCINI S., GUARNACCIA C., Open-source software tools for strategic noise mapping: a case study [https://iopscience.iop.org/article/10.1088/1742-6596/2162/1/012014], Journal of Physics: Conference Series, 2022, vol. 2162, 012014

AUMOND P., BOCHER E., ECOTIERE D., FORTIN N., GAUVREAU B., GUILLAUME G., PETIT G., Improvement of city noise map production processes and sensitivity analysis to noise models inputs [http://www.sea-acustica.es/fileadmin/Madeira21/ID122.pdf], Euronoise Conference Proceedings, 2021, p. 1128

BACLET S., VENKATARAMAN S., RUMPLER R., A methodology to assess the impact of driving noise from individual vehicles in an urban environment [http://axaco.s3.amazonaws.com/uploads/2021/06/07/MIHmJYsH/rev2021-032.pdf], Resource Efficient Vehicles Conference, 2021.

NOURMOHAMMADI Z., LILASATHAPORNKIT T., ASHFAQ M., et al., Mapping Urban Environmental Performance with Emerging Data Sources: A Case of Urban Greenery and Traffic Noise in Sydney, Australia [https://www.mdpi.com/2071-1050/13/2/605], Sustainability, 2021, vol. 13, n° 2, p. 605

BAEZA J. L., SIEVERT J. L., LANDWEHR A., et al., CityScope Platform for Real-Time Analysis and Decision-Support in Urban Design Competitions [https://www.igi-global.com/article/cityscope-platform-for-real-time-analysis-and-decision-support-in-urban-design-competitions/278826], International Journal of E-Planning Research (IJEPR), 2021, vol. 10, n° 4, p. 1-17

WANG Z., NOVACK T., YAN Y., ZIPF A., Quiet Route Planning for Pedestrians in Traffic Noise Polluted Environments [https://ieeexplore.ieee.org/document/9139350/], IEEE Transactions on Intelligent Transportation Systems, 2020

AUMOND P., FORTIN N., CAN A., Overview of the NoiseModelling open-source software version 3 and its applications [https://www.ingentaconnect.com/contentone/ince/incecp/2020/00000261/00000004/art00003], INTER-NOISE and NOISE-CON Congress and Conference Proceedings, 2020, vol. 261, n°4, p. 2005-2011

Dynamic Noise maps

LE BESCOND V., CAN A., AUMOND P., GASTINEAU P., Open-source modeling chain for the dynamic assessment of road traffic noise exposure [https://www.sciencedirect.com/science/article/pii/S1361920921000973], Transportation Research Part D: Transport and Environment, 2021, vol. 94, 102793 (Watch a short presentation [https://youtu.be/jNCG0qQrsrE] on Youtube)

CAN A., AUMOND P., BECARIE, C., LECLERCQ, L., Dynamic approach for the study of the spatial impact of road traffic noise at peak hours [https://pub.dega-akustik.de/ICA2019/data/articles/000646.pdf], Proceedings of the 23rd International Congress on Acoustics, Aachen, Allemagne, 09-13 September, 2019

QUINTERO G., AUMOND P., CAN A., BALASTEGUI A., ROMEU J., Statistical requirements for noise mapping based on mobile measurements using bikes [https://www.sciencedirect.com/science/article/abs/pii/S0003682X19302087], Applied Acoustics, 156, 271-278, 2019

[image: _images/Exposure.PNG]
 [https://www.youtube.com/watch?v=jl8tASDr-uQ&t=133s]

 Buildings

Buildings

NoiseModelling is a tool for producing noise maps. To do so, at different stages of the process, the application needs input data, respecting a strict formalism.

Below we describe the table BUILDINGS, dealing with buildings.

The other tables are accessible via the left menu in the Input tables & parameters section.

[image: _images/building_banner.png]

Table definition

Warning

In the list below, the columns noted with * are mandatory

	
	THE_GEOM *

	
	Description: building’s geometry. It can be in 2D (stuck to the ground) or in 3D (see Geometry modelling section below)

	Type: Geometry (POLYGON or MULTIPOLYGON)

	
	HEIGHT *

	
	Description: building’s height (in meters)

	Type: Double

	
	POP

	
	Description: number of inhabitant in the building

	Type: Double

Note

If you want to generate a scene without buildings, create two fictitious buildings, placed in two corners of the scene, and assign them a height of 0 meter.

Geometry modelling

In NoiseModelling, the geometry of the building is used to calculate the 3D ray path of the acoustic wave. Therefore, we need to know the footprint of the building as well as the points in height (at the roof, the gutter, …)

To determine the 3D shape of the building we can use some of the following elements:

	Zground : The ground altitude, exprimed in meters and based on the 0 sea level

	Zobject : The altitude in the air, exprimed in meters and based on the 0 sea level

	HEIGHT: The height, equal to the diffirence between Zobject and Zground

[image: _images/building_z_z_h.png]

In this context, geometry coordinates have to be in 3D, with:

	X and Y coordinates corresponding to the building’s footprint (or the gutter/roof projection to the ground)

	Z = Zobject : coordinate corresponding to the gutter or the roof altitude(s), …

Z coordinate deduction

Depending on the information you have, NoiseModelling will adpat the process to deduce the Zobject information and therefore the 3D frame of the building.

Two cases are possible:

1. The geometry has no Z coordinate

There is a DEM layer

The DEM is triangulated. Then, all the vertices of the building are projected onto the triangle below it in order to determine their altitudes. Finally, the minimum altitude is taken and assigned to the whole building: Zground = Minimum DEM Z value. Then:

	If HEIGHT > 0 then Zobject = Zground + HEIGHT

	If HEIGHT = 0 then Zobject = Zground and Warning message “Be carreful, some buildings are 0 meter high”

	If HEIGHT null or < 0 then Error message “Not possible to determine Z coordinates”

There is no DEM layer

	If HEIGHT > 0 then Zobject = HEIGHT

	If HEIGHT = 0 then Zobject = 0 and Warning message “Be carreful, some buildings are 0 meter high”

	If HEIGHT null or < 0 then Error message “Not possible to determine Z coordinates”

2. The geometry has a Z coordinate

	
	The Z coordinate correspond to Zobject

	
	It’s ok, your data is already ready to be used by NoiseModelling

	
	The Z coordinate correspond to Zground

	
	You are invited to correct Z value(s) by changing the information by yourself or by using the dedicated WPS block called Correct_building_altitude

Below is an example with a initial geometry (coordinates are exprimed in French Lambert 93 (EPSG:2154 [https://epsg.io/2154]) system) with a Zground value coupled with HEIGHT information. After correction, the geometry has a correct Z value, which corresponds to Zobject.

[image: _images/building_zground.png]

Ray path

Depending on the building modelisation and the Zobject you have, the acoustic wave path will differ.

In the 4 examples below,

	the left-hand side is dealing with the building’s modelisation. Pink circles represents the vertices of the geometry

	the right-hand side represents the corresponding path of the ray (in red), from the sound source (S) to the receiver (R) and how the building (in grey) is “understood” by NoiseModelling.

Case 1 : there is no roof

[image: _images/building_case_1.png]

Case 2 : Zobject is on the gutter level

[image: _images/building_case_2.png]

Case 3 : Zobject is on top ot the roof

[image: _images/building_case_3.png]

Case 4 : Complex roof shape

[image: _images/building_case_4.png]

Topology

In the table BUILDINGS there is no topological constraint. Even if it is not recommended, this means that NoiseModelling accepts that the buildings overlap. In this case, the highest points and edges will be retained for the determination of the wave path.

The figure below illustrate this possibility with two buildings that overlaps. The wave is going from the source S to the receveiver R.

[image: _images/building_topology.png]

 Roads

Roads

NoiseModelling is a tool for producing noise maps. To do so, at different stages of the process, the application needs input data, respecting a strict formalism.

Below we describe the table ROADS, dealing with the roads network.

The other tables are accessible via the left menu in the Input tables & parameters section.

[image: _images/roads_banner.png]

Table definition

Warning

	In the list below, the columns noted with * are mandatory

	This description is only valid for Noise_level_from_traffic and Road_Emission_from_Traffic WPS scripts. For the other WPS scripts, it is necessary to refer to the description of their input data

Note

In the list below, some columns are suffixed with the letters D, E and N. This correspond to Day (6-18h), Evening (18-22h) and Night (22-6h) periods. A column is expected for each of them.

	
	THE_GEOM *

	
	Description: Geometry of the roads (LINESTRING or MULTILINESTRING)

	Type: Geometry

	
	PK *

	
	Description: An identifier (PRIMARY KEY)

	Type: Integer

	
	LV_D, LV_E, LV_N

	
	Description: Hourly average light vehicle count

	Type: Double

	
	MV_D, MV_E, MV_N

	
	Description: Hourly average medium heavy vehicles, delivery vans > 3.5 tons, buses, touring cars, etc. with two axles and twin tyre mounting on rear axle count

	Type: Double

	
	HGV_D, HGV_E, HGV_N

	
	Description: Hourly average heavy duty vehicles, touring cars, buses, with three or more axles count

	Type: Double

	
	WAV_D, WAV_E, WAV_N

	
	Description: Hourly average mopeds, tricycles or quads ≤ 50 cc count

	Type: Double

	
	WBV_D, WBV_E, WBV_N

	
	Description: Hourly average motorcycles, tricycles or quads > 50 cc count

	Type: Double

	
	LV_SPD_D, LV_SPD_E, LV_SPD_N

	
	Description: Hourly average light vehicle speed (km/h)

	Type: Double

	
	MV_SPD_D, MV_SPD_E, MV_SPD_N

	
	Description: Hourly average medium heavy vehicles speed (km/h)

	Type: Double

	
	HGV_SPD_D, HGV_SPD_E, HGV_SPD_N

	
	Description: Hourly average heavy duty vehicles speed (km/h)

	Type: Double

	
	WAV_SPD_D, WAV_SPD_E, WAV_SPD_N

	
	Description: Hourly average mopeds, tricycles or quads ≤ 50 cc speed (km/h)

	Type: Double

	
	WBV_SPD_D, WBV_SPD_E, WBV_SPD_N

	
	Description: Hourly average motorcycles, tricycles or quads > 50 cc speed (km/h)

	Type: Double

	
	PVMT

	
	Description: CNOSSOS road pavement identifier [https://circabc.europa.eu/sd/a/00a6a620-b570-4f57-9dbb-76f66a48b325/CNOSSOS-] (Default DEF) (See NM possible values [https://github.com/Universite-Gustave-Eiffel/NoiseModelling/blob/4.X/noisemodelling-emission/src/main/resources/org/noise_planet/noisemodelling/emission/coefficients_Road_Cnossos_2020.json])

	Type: Varchar

	
	TEMP_D, TEMP_E, TEMP_N

	
	Description: Average Day, Evening and Night Celsius temperature (°C) (Default 20)

	Type: Double

	
	TS_STUD

	
	Description: A limited period (Ts) (in months) over the year where a average proportion (pm) of light vehicles are equipped with studded tyres [0-12]

	Type: Double

	
	PM_STUD

	
	Description: Average proportion of vehicles equipped with studded tyres during TS_STUD period [0-1]

	Type: Double

	
	JUNC_DIST

	
	Description: Distance to the junction (in meters). When approaching less than 100m from a junction, it is advisable to subdivide the section into 10m pieces and calculate the distance from the centroid of this sub-section to the junction. This allows for a finer calculation.

	Type: Double

	
	JUNC_TYPE

	
	
	Description: Integer defining the type of junction

	
	0 : None

	1 : A crossing with traffic lights

	2 : A roundabout

	Type: Integer

	
	SLOPE

	
	Description: Slope (in %) of the road section. If the column is not filled in, the LINESTRING Z-values will be used to calculate the slope and the traffic direction (WAY column) will be force to 3 (bi-directional)

	Type: Double

	
	WAY

	
	
	Description: Integer defining the way of the road section.

	
	1 = One way road section and the traffic goes in the same way that the slope definition you have used

	2 = One way road section and the traffic goes in the opposite way that the slope definition you have used

	3 = Bi-directional traffic flow, the flow is split into two components and correct half for uphill and half for downhill

	Type: Integer

Geometry modelling

In NoiseModelling, road geometries are used as a medium for road noise emission and propagation.

Emission

According to CNOSSOS-EU, emissions from road traffic should be 5cm above the ground.

You can create your own emmission layer or use the dedicated NoiseModelling block called Road_Emission_from_Traffic.groovy. In this script, the table ROADS is used to create the emission table LW_ROADS. As a consequence, whether or not your roads have a Z value in ROADS, NoiseModelling forces a Zsource value of 5cm in LW_ROADS.

[image: _images/roads_emission.png]

Warning

Whether you have Z values, the emission layer must be at an altitude of 5cm (above sea level) : Zsource = 0.05

Note

Z values in the input layer are only used to calculate the slope

Propagation

Whether you use your own sources or those calculated by NoiseModelling, the propagation step will consist of deducing the altitude from the DEM and adding the emission height (5cm).

[image: _images/roads_propagation.png]

Warning

	Zobject = Zdem + Zsource = Zdem + 0.05

	If there is no DEM, the altitude will be equal to 5cm (Zobject = 0.05)

	If your ROADS table has accurate Z values, you are invited to enrich your DEM with this information before doing the propagation step. See DEM section for more information.

Note

Z values in the input layer are only used to calculate the slope. They are not used to force the DEM

In this context, the roads geometry can be in 2D or in 3D. In both cases, Z information is not taken into account during emission or propagation steps.

 Railways

Railways

NoiseModelling is a tool for producing noise maps. To do so, at different stages of the process, the application needs input data, respecting a strict formalism.

Below are described the tables RAIL_SECTIONS and RAIL_TRAFFIC.

The other tables are accessible via the left menu in the Input tables & parameters section.

[image: _images/rails_banner.png]

Warning

In the lists below, the columns noted with * are mandatory

Railways sections

	Table name : RAIL_SECTIONS

	Description: contains all the sections of railways

Table definition

	
	THE_GEOM *

	
	Description: Railway’s geometry

	Type: Geometry (LINESTRING or MULTILINESTRING)

	
	IDSECTION *

	
	Description: A section identifier (PRIMARY KEY)

	Type: Integer

	
	NTRACK *

	
	Description: Number of tracks

	Type: Integer

	
	TRACKSPD *

	
	Description: Maximum speed on the section (in km/h)

	Type: Double

	
	TRANSFER

	
	
	Description: Track transfer function identifier

	
	1 = Mono-bloc sleeper on soft rail pad

	2 = Mono-bloc sleeper on medium rail pad

	3 = Mono-bloc sleeper on stiff rail pad

	4 = Bi-bloc sleeper on soft rail pad

	5 = Bi-bloc sleeper on medium rail pad

	6 = Bi-bloc sleeper on stiff rail pad

	7 = Wooden sleeper (Traverse en bois)

	Type: Integer

	
	ROUGHNESS

	
	
	Description: Rail roughness identifier

	
	1 = Classic lines

	2 = TGV (for France) lines

	Type: Integer

	
	IMPACT

	
	
	Description: Impact noise coefficient identifier

	
	0 = No impact

	1 = Single joint, switch or crossing per 100 m

	Type: Integer

	
	CURVATURE

	
	
	Description: Section’s curvature identifier

	
	0 = R > 500 m

	1 = 300 m < R < 500 m

	2 = R < 300 m

	Type: Integer

	
	BRIDGE

	
	
	Description: Bridge transfer function identifier

	
	0 = Any type of track or bridge except metal bridges with unballasted tracks

	1 = Metal bridges with unballasted tracks + 5dB

	Type: Integer

	
	TRACKSPC

	
	Description: Commercial speed on the section (in km/h)

	Type: Double

	
	ISTUNNEL

	
	Description: Indicates whether the section is a tunnel or not (0 = no / 1 = yes)

	Type: Boolean

Geometry modelling

The modeling of the geometry is identical to the road’s one (see “Roads” page). The only difference is that the affected height is not 5cm by default. It depends on the model used (e.g in CNOSSOS: rolling noise = 0.05m / aerodynamic noise = 4m).

Railways traffic

	Table name : RAIL_TRAFFIC

	Description: contains all the railways traffic

Table definition

	
	IDTRAFFIC *

	
	Description: A traffic identifier (PRIMARY KEY)

	Type: Integer

	
	IDSECTION *

	
	Description: A section identifier, refering to RAIL_SECTIONS table

	Type: Integer

	
	TRAINTYPE *

	
	Description: Type of vehicle, listed in the Rail_Train_SNCF_2021.json [https://github.com/Universite-Gustave-Eiffel/NoiseModelling/blob/4.X/noisemodelling-emission/src/main/resources/org/noise_planet/noisemodelling/emission/Rail_Train_SNCF_2021.json] file (mainly for french SNCF)

	Type: Varchar

	
	TRAINSPD *

	
	Description: Maximum train speed (in km/h)

	Type: Double

	
	TDAY

	
	Description: Hourly average train count, during the day (6-18h)

	Type: Integer

	
	TEVENING

	
	Description: Hourly average train count, during the evening (18-22h)

	Type: Integer

	
	TNIGHT

	
	Description: Hourly average train count, during the night (22-6h)

	Type: Integer

 Ground surfaces

Ground surfaces

NoiseModelling is a tool for producing noise maps. To do so, at different stages of the process, the application needs input data, respecting a strict formalism.

Below we describe the table GROUND, dealing with the land use type, with an associated ground absorption coefficient (G).

The other tables are accessible via the left menu in the Input tables & parameters section.

[image: _images/ground_clc_banner.jpg]

Table definition

Warning

In the list below, the two columns are mandatory

	
	THE_GEOM

	
	Description: 2D geometry of the surfaces (POLYGON or MULTIPOLYGON)

	Type: Geometry

	
	G

	
	Description: acoustic ground’s absorption (from 0 : very hard to 1 : very soft - see table below)

	Type: Double

G values for different types of ground (extracted from “Common Noise Assessment Methods in Europe (CNOSSOS-EU [https://hal.archives-ouvertes.fr/hal-00985998/document])”, p86)

	Description

	G

	Very soft (snow or moss‐like)

	1

	Soft forest floor (short, dense heather‐like or thick moss)

	1

	Uncompacted, loose ground (turf, grass, loose soil)

	1

	Normal uncompacted ground (forest floors, pasture field)

	1

	Compacted field and gravel (compacted lawns, park area)

	0.7

	Compacted dense ground (gravel road, car park)

	0.3

	Hard surfaces (most normal asphalt, concrete)

	0

	Very hard and dense surfaces (dense asphalt, concrete, water)

	0

Topology

At a given point, there can only be one value of G. Consequently, in the GROUND table, the geometries must not overlap.

 DEM

DEM

NoiseModelling is a tool for producing noise maps. To do so, at different stages of the process, the application needs input data, respecting a strict formalism.

Below we describe the table DEM, dealing with the Digital Elevation Model matrix.

The other tables are accessible via the left menu in the Input tables & parameters section.

[image: _images/dem_banner.png]

Note

If your DEM is in raster, please use the Import_Asc_File WPS script which will format your DEM in the right format

Table definition

Warning

In the list below, the column noted with * is mandatory

	
	THE_GEOM *

	
	Description: 3D point of the matrix (POINT or MULTIPOINT). Z coordinate represent the altitude from the 0 sea level.

	Type: Geometry

DEM enrichment

If you have input data with a good elevation quality (better than the DEM one) / higher density and if you are comfortable with GIS tools, you are invited to enrich your DEM so that it takes into account the structuring elements of the territory.

Note

You can find dedicated scripts (e.g Enrich_DEM_with_lines, …) in the Geometric Tools section of the left-side menu of NoiseModelling

Below is an example of DEM enrichment using road network:

	Roads (red lines) are inserted into the DEM (blue points),

	Roads are densified in order to have more points (red) (for example a new point every 5m along the road). For each new point, the altitude (Za1, Za2, …) is deduced from a linear interpolation between input vertices (Za, Zb, Zc, …),

	We generate the road platform (pink area), using the road’s width or an arbitrary distance (e.g 3m). The densified points (green), which keep the interpolated altitudes, are placed along this new plateform,

	All the DEM points that intersects the road platform are removed from the layer.

[image: _images/dem_enrichment.png]

 Directivity

Directivity

NoiseModelling is a tool for producing noise maps. To do so, at different stages of the process, the application needs input data, respecting a strict formalism.

Below we describe the table DIRECTIVITY, containing all the directivity parameters.

The other tables are accessible via the left menu in the Input tables section.

[image: _images/directivity_banner.png]

Note

If you want to see how to use this table, have a look to the tutorial “Noise Map from Point Source - GUI” , in the section Step 5 (bonus): Change the directivity

Table definition

Warning

In the list below, the columns noted with * are mandatory

	
	DIR_ID *

	
	Description: identifier of the directivity sphere

	Type: Integer

	
	THETA

	
	Description: vertical angle in degrees, 0 (front), -90 (bottom), 90 (top), from -90 to 90

	Type: Double

	
	PHI

	
	Description: horizontal angle in degrees, 0 (front) / 90 (right), from 0 to 360

	Type: Double

	
	LW63

	
	Description: attenuation levels in dB for 63 Hz

	Type: Double

	
	LW125

	
	Description: attenuation levels in dB for 125 Hz

	Type: Double

	
	LW250

	
	Description: attenuation levels in dB for 250 Hz

	Type: Double

	
	LW500

	
	Description: attenuation levels in dB for 500 Hz

	Type: Double

	
	LW1000

	
	Description: attenuation levels in dB for 1000 Hz

	Type: Double

	
	LW2000

	
	Description: attenuation levels in dB for 2000 Hz

	Type: Double

	
	LW4000

	
	Description: attenuation levels in dB for 4000 Hz

	Type: Double

	
	LW8000

	
	Description: attenuation levels in dB for 8000 Hz

	Type: Double

 Receivers

Receivers

NoiseModelling is a tool for producing noise maps. To do so, at different stages of the process, the application needs input data, respecting a strict formalism.

Below we describe the table RECEIVERS, dealing with the receivers.

The other tables are accessible via the left menu in the Input tables & parameters section.

[image: _images/receivers_banner.png]

Table definition

Warning

The two following columns are mandatory

	
	PK

	
	Description: receiver’s unique identifier.

	Type: Integer - Primary Key

	
	THE_GEOM

	
	Description: 3D receiver’s geometry. Z coordinate correspond to the receiver’s height (relative to ground altitude)

	Type: Geometry (POINT or MULTIPOINT)

If you are working with receivers based on buildings (e.g 50 cm around the building’s facades - see Building_grid script), your RECEIVERS table will need this additional column:

	
	BUILD_PK

	
	Description: building’s Primary Key (PK), allowing to link the receivers with their building

	Type: Integer

Parameters

Below are listed the most important input parameters that may be found in the scripts dealing with receivers generation (e.g Building_grid, Delaunay_grid, …) (see Receivers section in the left-side menu of NoiseModelling).

These parameters can be mandatory or optional. When necessary, we indicates the default values and those we recommend (from an acoustic point of view).

Maximum area

	Parameter name: maxArea

	Description: Set Maximum Area. No triangles larger than the provided area will be created. Smaller area will create more receivers (square meters)

	Type: Double

	Default value: 2500

	Recommanded value: 2500

[image: _images/receivers_maxArea.png]

Maximum cell size

	Parameter name: maxCellDist

	Description: Maximum distance used to split the domain into sub-domains. In a logic of optimization of processing times, it allows to limit the number of objects (buildings, roads, …) stored in memory during the Delaunay triangulation (meters)

	Type: Double

	Default value: 600

	Recommanded value:

[image: _images/receivers_maxCellDist.png]

Road width

	Parameter name: roadWidth

	Description: Set Road Width. No receivers closer than road width distance will be created (meters)

	Type: Double

	Default value: 2

	Recommanded value:

Height

	Parameter name: height

	Description: Receiver height relative to the ground (meters)

	Type: Double

	Default value: 4

	Recommanded value:

 Acoustic parameters

Acoustic parameters

In the different WPS scripts of NoiseModelling, you will find many input parameters, mandatory or optional.

Below we list the most important ones, indicating, where necessary, the default values and those we recommend (from an acoustic point of view).

[image: _images/acoustics_parameters_banner.png]

The following parameters may be found in the scripts dealing with noise emission or propagation (e.g Noise_level_from_traffic, Noise_level_from_source`, …)

Probability of occurrences

	Parameter name: confFavorableOccurrencesXXXXX (with XXXXX = evening, day, night, …)

	Description: Comma-delimited string containing the probability ([0,1]) of occurrences of favourable propagation conditions. Follow the clockwise direction. The north slice is the last array index (n°16 in the schema below) not the first one

	Type: Double

	Default value: 0.5, 0.5, 0.5, 0.5, 0.5, 0.5, 0.5, 0.5, 0.5, 0.5, 0.5, 0.5, 0.5, 0.5, 0.5, 0.5

	Recommanded value:

[image: _images/acoustics_parameters_confFavorableOccurrences.png]

Relative humidity

	Parameter name: confHumidity

	Description: Humidity for noise propagation (%) [0,100]

	Type: Double

	Default value: 70

	Recommanded value: depends on the average conditions at the location where you perform the simulation

Air temperature

	Parameter name: confTemperature

	Description: Air temperature (°C)

	Type: Double

	Default value: 15

	Recommanded value: depends on the average conditions at the location where you perform the simulation

Order of reflexion

	Parameter name: confReflOrder

	Description: Maximum number of reflections to be taken into account. Warning: adding 1 order increases the processing time significantly

	Type: Integer

	Default value: 1

	Recommanded value: 1 or 2

Diffraction on horizontal edges

	Parameter name: confDiffHorizontal

	Description: Compute or not the diffraction on horizontal edges

	Type: Boolean

	Default value: False

	Recommanded value: True

Diffraction on vertical edges

	Parameter name: confDiffVertical

	Description: Compute or not the diffraction on vertical edges. Following Directive 2015/996, enable this option for rail and industrial sources only

	Type: Boolean

	Default value: False

	Recommanded value:

Maximum source-receiver distance

	Parameter name: confMaxSrcDist

	Description: Maximum distance between source and receiver (meters)

	Type: Double

	Default value: 150

	Recommanded value: Between 500 and 800

[image: _images/acoustics_parameters_confMaxSrcDist.png]

Maximum source-reflexion distance

	Parameter name: confMaxReflDist

	Description: Maximum search distance of walls / facades from the “Source-Receiver” segment, for the calculation of specular reflections (meters)

	Type: Double

	Default value: 50

	Recommanded value: Between 350 and 800

[image: _images/acoustics_parameters_confMaxReflDist.png]

Wall absorption coefficient

	Parameter name: paramWallAlpha

	Description: Wall absorption coefficient [0,1] (between 0 : “fully absorbent” and 1 : “fully reflective”)

	Type: Double

	Default value: 0.1

	Recommanded value: 0.1

Separate receiver level by source identifier

	Parameter name: confExportSourceId

	Description: Keep source identifier in output in order to get noise contribution of each noise source

	Type: Boolean

	Default value: False

	Recommanded value:

Thread number

	Parameter name: confThreadNumber

	Description: Number of thread to use on the computer

	Type: Integer

	Default value: 0 (0 = Automatic. Will check the number of cores and apply -1. (e.g: 8 cores = 7 cores will be used))

	Recommanded value: 0

 Requirements

Requirements

Java environment

Since NoiseModelling is developped with the Java langage [https://en.wikipedia.org/wiki/Java_(programming_language)], you will need to install the Java Runtime Environment (JRE) on your computer to use the application.

Warning

Only version 11.x of Java is compatible with NoiseModelling 4.x. Unfortunatelay, former or newer versions are not compatible with NoiseModelling 4.x.

Windows

If you are launching NoiseModelling thanks to the NoiseModelling_xxx_install.exe file, the JRE is already inside, so you don’t have anything to do.

If you are not using the .exe file, you have to launch NoiseModelling thanks to the `...\bin\startup_windows.bat file (in the NoiseModelling_xxx.zip release file). In this case, Java v11.x has to be installed before.

	Download and install Java: choose between OpenJDK [https://jdk.java.net/archive/] or Oracle [https://www.oracle.com/fr/java/technologies/javase/jdk11-archive-downloads.html] versions.

	You can check if JAVA_HOME environnement variable is well settled to your last installed Java folder using echo %JAVA_HOME% in your command prompt. You should have a result similar to C:\\Program Files (x86)\\Java\\jre1.8.x_x\\.

	If you don’t have this result, it is probably because your JAVA_HOME environnement variable is not well settled. To set you JAVA_HOME environnement variable you can adapt (with x the JAVA version number) you installed and use the following command line : setx JAVA_HOME "C:\\Program Files (x86)\\Java\\jre.1.8.x_x" in your command prompt. You can also refer to this document [https://confluence.atlassian.com/doc/setting-the-java_home-variable-in-windows-8895.html] for example.

	You may have to reboot your command prompt after using the precedent command line before printing again echo %JAVA_HOME%.

Warning

The command promprt should print C:\\Program Files (x86)\\Java\\jre1.11.x_x\\ whithout the bin directory. If JAVA_HOME is settled as C:\\Program Files (x86)\\Java\\jre1.11.x_x\\bin, it will not work. It should also point to a JRE (Java Runtime Environment) Java environnement and not JDK.

Linux or Mac

If not already done, you have to install the Java version v11.x.

	Download and install Java: choose between OpenJDK [https://jdk.java.net/archive/] or Oracle [https://www.oracle.com/fr/java/technologies/javase/jdk11-archive-downloads.html] versions.

	You can check if JAVA_HOME environnement variable is well settled to your installed v11.x Java folder using echo $JAVA_HOME in your command prompt. You should have a result similar to /usr/lib/jvm/java-11-openjdk-amd64/.

	If you don’t have this result, it is probably because your JAVA_HOME environnement variable is not well settled. In this case, you are invited to follow the steps proposed here [https://stackoverflow.com/questions/24641536/how-to-set-java-home-in-linux-for-all-users].

	Once done, you may have to reboot your command prompt (or maybe disconnect/reconnect your session) after using the precedent command line before printing again echo $JAVA_HOME.

 Get Started - GUI

Get Started - GUI

Below we present a simple application case, allowing you to discover NoiseModelling through its Graphical User Interface .

Step 1: Download NoiseModelling

Download the latest realease of NoiseModelling on Github [https://github.com/Ifsttar/NoiseModelling/releases].

	Windows: you can directly download and execute the NoiseModelling_4.x.x_install.exe installer file (or you can also follow Linux / Mac instructions below)

	Linux or Mac: download the NoiseModelling_4.x.x.zip file and unzip it into a chosen directory

Warning

The chosen directory can be anywhere, but be sure that you have write access. If you are using the computer of your company, the Program Files folder is probably not a good idea.

Warning

For Linux and Mac users, please make sure your Java environment is well setted. For more information, please read the page Requirements. Windows users who are using the .exe file are not concerned since the Java Runtime Environment is already embeded.

Note

Only from version 3.3, NoiseModelling releases include the user interface described in this tutorial.

Step 2: Start NoiseModelling GUI

As seen in the page “Architecture”, NoiseModelling can be used through a Graphic User Interface (GUI), thanks to Geoserver and WPS Builder bricks.

In this tutorial, we will use the default and already configured H2GIS database.

Those tools (Geoserver, WPS Builder and H2GIS) are already included in the archive. So you don’t have to install them before.

To launch NoiseModelling with GUI, please execute :

	Windows: NoiseModelling.exe or NoiseModelling_xxx\bin\startup_windows.bat

	Linux or Mac: NoiseModelling_xxx/bin/startup_linux_mac.sh (check authorize file execution in property of this file before)

and wait until INFO:oejs.Server:main:Started is written in your command prompt.

Warning

Depending on your computer configuration, the NoiseModelling launch can take some time. Be patient.

NoiseModelling with GUI is now started.

Tip

NoiseModelling will be open as long as the command window is open. If you close it, NoiseModelling will automatically be closed and you will not be able to continue with the tutorial.

Step 3: Open NoiseModelling GUI

The NoiseModelling GUI is built thanks to the WPS Builder brick. To open it, just go to http://localhost:9580 using your preferred web browser.

[image: _images/Tutorial1_nm_open.png]

Warning

On former versions of NoiseModelling, the url was: http://localhost:8080/geoserver/web/

You are now ready to discover the power of NoiseModelling!

Step 4: Load input files

To compute your first noise map, you will need to load input geographic files into the NoiseModelling database.

In this tutorial, we have 5 layers, zoomed in the city center of Lorient [https://www.openstreetmap.org/relation/30305] (France): Buildings, Roads, Ground type, Topography (DEM) and Receivers.

In the noisemodelling/data_dir/data/wpsdata/ folder, you will find the 5 files (4 shapefiles and 1 geojson) corresponding to these layers.

You can import these layers in your database using the Import File or Import Folder blocks.

	Drag Import File block into the Builder window

	Select Path of the input File box and write data_dir/data/wpsdata/buildings.shp in the field PathFile (on the right-side column)

	Then click on Run Process after selecting one of the sub-boxes of your process

[image: _images/Tutorial1_Image1bis.gif]

Repeat this operation for the 4 other files:

	data_dir/data/wpsdata/ground_type.shp

	data_dir/data/wpsdata/receivers.shp

	data_dir/data/wpsdata/ROADS2.shp

	data_dir/data/wpsdata/dem.geojson

Files are uploaded to database when the Console window displays The table x has been uploaded to database.

Note

	If you have the message Error opening database, please refer to the note in Step 1.

	The process is supposed to be quick (<5 sec.). In case of out of time, try to restart NoiseModelling (see Step 2).

	Orange blocks are mandatory

	Beige blocks are optional

	If all input blocks are optional, you must modify at least one of these blocks to be able to run the process

	Blocks get solid border when they are ready to run

	Read the WPS Builder page for more information

Once done, you can check if the tables have been well imported in the database. To do so, drag/drop and execute the Display_Database WPS script (in the “Database_Manager” part). You should see on the right panel the tables list (and their columns if you checked the the option in the Display columns of the tables block).

[image: _images/Tutorial1_display_db.png]

Step 5: Run Calculation

To run Calculation you have to drag the block Noise_level_from_traffic into WPS Builder window.

Then, select the orange blocks and indicate the name of the corresponding table in your database:

	Building table name : BUILDINGS

	Sources table name : ROADS2

	Receivers table name : RECEIVERS

The beige blocks correspond to optionnal parameters (e.g DEM table name, Ground absorption table name, Diffraction on vertical edges, …).

When ready, you can press Run Process.

[image: _images/Tutorial1_Image2bis.PNG]

As a result, the tables LDAY_GEOM, LEVENING_GEOM, LNIGHT_GEOM and LDEN_GEOM will be created in your database. These tables correspond to the noise levels, based on receiver points, for the 4 different period of the day.

Step 6: Export (& see) the results

You can now export the output tables (one by one) in your favorite export format using Export_Table block, giving the path of the file you want to create.

Warning

Dont’ forget to add the file extension (e.g c:/home/receivers.geojson or c:/home/lday_geom.shp) (Read more info about file extensions here: Tutorials - FAQ)

[image: _images/Tutorial1_Image3.PNG]

For example, you can choose to export the tables in .shp format. This format can be read with most of GIS tools such as the free and open-source QGIS [https://www.qgis.org/fr/site/] and SAGA [http://www.saga-gis.org/en/index.html] softwares.

Note

For those who are new to GIS and want to get started with QGIS, we advise you to follow this tutorial [https://docs.qgis.org/3.22/en/docs/training_manual/basic_map/index.html] as a start.

To obtain the following image, use the syling vector options in your GIS and assign a color gradient to LAEQ column of your exported LDAY_GEOM table.

[image: _images/Tutorial1_Image4.PNG]

Tip

Now that you have made your first noise map (congratulations!), you can try again, adding / changing optional parameters to see the differeneces.

Step 7: Know the possibilities

Now that you have finished this introduction tutorial, take the time to read the description of each of the WPS blocks present in your NoiseModelling version.

By clicking on each of the inputs or outputs, you will find a lot of information.

[image: _images/Tutorial1_ImageLast.gif]

 Noise Map from OSM - GUI

Noise Map from OSM - GUI

In this tutorial, we are going to produce a noise map, using OpenStreetMap [https://www.openstreetmap.org/] (OSM) data. The exercice will be made through NoiseModelling with Graphic User Interface (GUI).

Prerequisites

	You need at least NoiseModelling v.3.0.6; the best is always to use last release

	We assume you already installed/configured Java and installed NoiseModelling. If not, follow Step 1 in “Get Started - GUI” page

Warning

If you have just finished the “Get Started - GUI” tutorial, please clean your database with the WPS block Clean_Database. Don’t forget to check the Are you sure check box before running the process.

Step 1: Get OSM data

Note

OpenStreetMap data can be downloaded in various formats. The main ones are .osm, .osm.gz and .osm.pbf (read more [https://wiki.openstreetmap.org/wiki/OSM_file_formats]). For this example, we will use .osm.pbf file, which is a compressed version of .osm.

Download OSM data

	Go to https://extract.bbbike.org/ website. This platform is built on top of OpenStreetMap database and allows you to extract data in a very simple way.

	In the “Format” drop-down list, choose Protocolbuffer (PBF)

	Give a name to the area you will download (this information is used to name your extraction request)

	Enter your email, so that BBBike will be able to send you the download link once your data are ready (no data collection for commercial purpose).

	Zoom in on the area you want to download (be careful, depending on the zoom level, the file you will get may be very heavy)

	Click on the here icon to create the bounding box. If you click on the bbox, you can then make modification.

	When ready, click on extract button.

In the email you will receive from BBBike, use the link to download your data. You will get a file called planet_xx.xx,xx.xx.osm.pbf

Warning

To avoid potential upcoming errors rename the file planet_xx.xx,xx.xx.osm.pbf to something simpler (e.g. my_area.osm.pbf).

Note

Developped by Wolfram Schneider [https://wolfram.schneider.org/], BBBike is a free of charge service (for non-professional purpose). If you like Wolfram’s job and wants to help him support the server costs, you are invited to donate [https://extract.bbbike.org/community.html#donate].

Import to the database

To import the .pbf file into the NoiseModelling database, we use the Import_OSM WPS block (note that this block also allows to load .osm or .osm.gz files).

	Target projection identifier: enter the corresponding SRID (see note below) (e.g. 2154 for french Lambert 93)

	Path of the OSM file: enter the adress of your my_area.osm.pbf file (e.g. /home/noisemodelling/my_area.osm.pbf)

	If needeed, check the 4 other optionnal options

	When ready, click on the green Run Process button

Once done, three tables must be created: BUILDINGS, GROUND and ROADS

Note

About the Coordinate System (EPSG code)

In several input files, you need to specify coordinates, e.g road network. You can’t use the WGS84 coordinates (i.e. GPS coordinates). Acoustic propagation formulas make the assumption that coordinates are metric. Many countries and regions have custom coordinate system defined, optimized for usages in their appropriate areas. It might be best to ask some GIS specialists in your region of interest what the most commonly used local coordinate system is and use that as well for your data. If you don’t have any clue about what coordinate system is used in your region, it might be best to use the Universal Transverse Mercator coordinate system. This coordinate system divides the world into multiple bands, each six degrees width and separated into a northern and southern part, which is called UTM zones (see http://en.wikipedia.org/wiki/UTM_zones#UTM_zone for more details). For each zone, an optimized coordinate system is defined. Choose the UTM zone which covers your region (Wikipedia has a nice map showing the zones) and use its coordinate system.

Here is the map : https://upload.wikimedia.org/wikipedia/commons/e/ed/Utm-zones.jpg

Warning

	The current import script from OpenStreetMap may (in few specific cases) produce geometries incompatible with NoiseModelling. If an area has a problem, try to reduce the area. A much more robust version of this script will be available soon.

	As OSM does not include data on road traffic flows, default values are assigned according to the “Good Practice Guide for Strategic Noise Mapping and the Production of Associated Data on Noise Exposure [https://sicaweb.cedex.es/docs/documentacion/Good-Practice-Guide-for-Strategic-Noise-Mapping.pdf] - Version 2”.

Step 2: Visualize OSM data

Now, to be sure that OSM data are corresponding to our need, we can take time to visualize them. To do so, we have various possibilities:

With NoiseModelling GUI

	The contents of the database can be viewed using Display_Database WPS script.

	A spatial layer can be visualized using Table_Visualization_Map WPS script.

	A data table can be visualized using Table_Visualization_Data WPS script.

With H2 or DBeaver client

While NoiseModelling is open, if you are working with the default H2/H2GIS database, you can display your database in both the H2 / H2GIS web interface and DBeaver. To do so, just follow the Access NoiseModelling database page.

Export tables into files

	Export a table: It is also possible to export the tables via Export_Table WPS script, in Shapefile, CSV or GeoJSON format.

	View the files: Then open these files into your preferred Geographic Information System (e.g QGIS [http://qgis.org/], OrbisGIS [http://orbisgis.org/], …). You can then graphically visualize your geometries layer, but also the data contained in it. Take the time to familiarize yourself with your chosen GIS.

	Add a background map: Most of the GIS allow you to add an WMS [https://www.ogc.org/standards/wms] OSM background map [https://wiki.openstreetmap.org/wiki/Tile_servers]: (see an example with QGIS [https://wiki.openstreetmap.org/wiki/QGIS])

	Change colors: Most of the GIS allow you to change layer colors (e.g. GROUND layer in green, BUILDINGS in gray, ROADS in red).

Step 3: Generate a Receiver table

The locations of noise level evaluation points needs to be defined.

Use Delaunay_Grid with the previously generated BUILDINGS table as the buildings table and ROADS as Sources table name.
Other parameters are optional.

Don’t forget to view your resulting layer in WPSBuilder or in your GIS to check that it meets your expectations.

This processing block will give the possibility to generate a noise map later.

Step 4: Associate emission noise level with roads

The Road_Emission_from_Traffic block is used to generate a road layer, called LW_ROADS, containing LW emission noise level values in accordance with the emission laws of the CNOSSOS model. The format of the input road layer can be found in the description of the WPS Block.

Don’t forget to view your resulting layers (see Step 2) to check that it meets your expectations.

Step 5: Source to Receiver Propagation

The Noise_level_from_source block allows to generate a layer of receiver points with associated sound levels corresponding to the sound level emitted by the sources (created table LW_ROADS) propagated to the receivers according to the CNOSSOS-EU. propagation laws.

Step 6: Create Isosurfaces map

Create an interpolation of levels between receivers points using the block Create_Isosurface.

Set LDEN_GEOM as Name of the noise table.

Step 7: View the result

Export

You can then export the output table CONTOURING_NOISE_MAP via Export_Table in Shapefile or GeoJSON format.

View

You can view this layer in your favorite GIS. You can then apply a color gradient on ISOLVL field; the noise level intervals are in ISOLABEL field.

[image: _images/Tutorial2_ContouringNoiseMap.png]

 Noise Map from Point Source - GUI

Noise Map from Point Source - GUI

In this tutorial, we are going to produce a noise map, based on a unique source point. The exercice will be made through NoiseModelling with Graphic User Interface (GUI).

To make it more simple, we will use the data used in the Get Started - GUI tutorial.

This tutorial is divided in 5 steps:

	Create the source point

	Import data in NoiseModelling

	Generate the noise map

	Play with options

	Take into account directivity

Step 1: Create the source point

To create the source point, we will use the free and opensource GIS software QGIS [http://qgis.org/].

Note

For those who are new to GIS and want to get started with QGIS, we advise you to follow this tutorial [https://docs.qgis.org/3.22/en/docs/training_manual/basic_map/index.html] as a start.

Load data into QGIS

Once installed, launch QGIS and load the three buildings.shp, roads.shp and ground_type.shp files (that are in the folder ../NoiseModelling_4.0.0/data_dir/data/wpsdata/). To do so, you can just drag & drop these files into the Layers menu (bottom left of the user interface). Or you can also select them thanks to the dedicated panel opened via the Layer / Add a layer / Add a vectorial layer... / menu (or use Ctrl+Maj+V shortcut)

You should see your input data in the map as below:

[image: _images/load_data_qgis.png]

Initialize the source point layer

In QGIS, we will create a new empty layer called Point_Source in which we will add the source point.

To do so, click on the Layer / Create Layer / New Temporary Scratch Layer... / menu. In the opened dialog, fill the detailed information below :

	File name : Point_Source

	Geometry type : choose Point in the dropdown list

	Include Z dimension : check the box. This way the created point will be defined with X, Y and Z coordinates

	In the projection system dropdown list, choose a metric system. Here we will choose the one used for the buildings, roads and ground_type layers, that are in metropolitan France : Lambert 93 system = EPSG:2154 (if the system is not present in the dropdown list, use the Globe icon on the right to find it)

In the New field part, fill the information below:

	Name : PK . Unique id (Primary Key)

	Type : Integer

	Length : 2

Once done, click on Add to Fields List. Then redo this step with the following informations:

	Name : LWD500 . Source noise level (LW) during the day (D) at a frequency of 500 Hz

	Type : Decimal number

	Length : 5

	Precision : 2

You should have something like this

[image: _images/create_source_point_layer.png]

Once done, click on OK button. The new layer Point_Source should appear in your Layers panel.

Add a new source point

Now we have an empty layer. It’s time to feed it with a point geometry.

By default, the new temporary layer is already turned into edtion mode. If not, you can activate it thanks to these two options:

	In the Layers panel, select the Point_Source layer and make a right-click. Choose Toggle Editing

	or you can click on the “Yellow pencil” icon in the toolbar

[image: _images/edit_layer_source.png]

Now we can add a new point, by clicking on the dedicated icon (see illustration below) and then by clicking somewhere in the map.

To have an interesting resulting noise map, choose to place your source point next to buildings.

[image: _images/place_point_source.png]

Click on the map where you want to create the source point. Once clicked, a new dialog appears and you are invited to fill the following attributes:

	PK: 1

	LWD500 : 90

[image: _images/fill_attributes.png]

Once done, click on OK. The source point is now visible in the map (the blue point in the illustration below).

[image: _images/layer_source.png]

Now, we have to save this temporary layer into a flat file. To do so, just make a right-click on the layer name and choose the Make permanent option.

[image: _images/convert_point_source_geojson.png]

In the new dialog, select GeoJSON file format and then define the path and the name of your resulting .geojson file. Press OK when ready.

[image: _images/save_geojson.png]

Your Point_Source.geojson file is now ready to be imported in NoiseModelling.

For your information, you can open .geojson files in most of text editor. If you do so with Point_Source.geojson, you will have something like this:

{
"type": "FeatureCollection",
"name": "Point_Source",
"crs": {"type": "name", "properties": { "name": "urn:ogc:def:crs:EPSG::2154" } },
"features": [{"type": "Feature", "properties": { "PK": 1, "LWD500": 90.0 },
 "geometry": {"type": "Point", "coordinates": [223771.0727, 6757583.2983, 0.0]}
 }]
}

Step 2: Import input data in NoiseModelling

Once NoiseModelling is launched (see Step 2: Start NoiseModelling GUI in Get Started - GUI page), load the four BUILDINGS, ROADS and GROUND_TYPE, POINT_SOURCE layers (see Step 4: Load input files for more details).

If you use the Database_Manager:Display_Database WPS script, you should see your four tables like below:

[image: _images/table_list_NM.png]

Step 3: Generate the noise map

We are now ready to generate the noise map, based on a unique source point.

Create the receivers grid

Use the Receivers:Delaunay_Grid WPS script. Fill the two following mandatory parameters (in orange) and click on Run Process button:

	Source table name : POINT_SOURCE

	Buildings table name : BUILDINGS

Once done, you should have two new tables : RECEIVERS (illustrated below with the purple small points) and TRIANGLES

[image: _images/table_receivers.png]

Calculate noise levels

Use the NoiseModelling:Noise_level_from_source WPS script. Fill the three following mandatory parameters (in orange):

	Source table name : POINT_SOURCE

	Receivers table name : RECEIVERS

	Buildings table name : BUILDINGS

Warning

For this example, since we only added information for noise level during the day (field LWD500), we have to skip the noise level calculation for LDEN, LNIGHT and LEVENING. To do so, check the boxes for Do not compute LDEN_GEOM, Do not compute LEVENING_GEOM and Do not compute LNIGHT_GEOM options.

Once ready, click on Run Process button.

You should then have this message: Calculation Done ! LDAY_GEOM table(s) have been created.

Generate noise level isosurfaces

Use the Acoustic_Tools:Create_Isosurface WPS script. Fill the following mandatory parameter (in orange) and click on Run Process button:

	Sound levels table : LDAY_GEOM

You should have this message: Table CONTOURING_NOISE_MAP created

Now, you can export this table into a .shapefile, using the Import_and_Export:Export_Table WPS script.

You can then visualize this file into QGIS (just load the file as seen before). The resulting table (in grey) is illustred below

[image: _images/table_contouring.png]

Apply a color palette adapted to acoustics

In QGIS, since the isosurface table is not easy to read (everything is grey in our example), we will change the color palette to have colors depending on the noise levels. This information is present in the field ISOLVL in the attributes table. To open it, just select the layer CONTOURING_NOISE_MAP and press F6.

[image: _images/contouring.png]

To adapt the colors, we will apply a cartographic style. This style:

	has been proposed by B. Tomio (Weninger) in “A Color Scheme for the Presentation of Sound Immission in Maps : Requirements and Principles for Design” (see publication [https://www.semanticscholar.org/paper/A-Color-Scheme-for-the-Presentation-of-Sound-in-%3A-Weninger/a72d13fcc53488567b45a08a78f969c7b3552ac0] and website [https://www.coloringnoise.com/theoretical_background/new-color-scheme/])

	is provided (by NoiseModelling team) as a .sld (Style Layer Descriptor) file and can be downloaded here [https://github.com/Universite-Gustave-Eiffel/NoiseModelling/blob/v4.0.2/Docs/styles/style_beate_tomio.sld]

Note

If you want to know more about noise map styles, you should read the “Noise Map Color Scheme” page.

Once downloaded, make a double click on the layer CONTOURING_NOISE_MAP. It will opens the property panel. Here, click on the Symbology tab.
In the Style menu (at the bottom), choose Load style. Then in the opened dialog, click on the ... icon to search the style_beate_tomio.sld file. Once selected, click on Load style.

[image: _images/style_sld.png]

The style with its different colors is now displayed.

[image: _images/style_scale.png]

Press OK to apply and close the dialog. Your noise map is now well colorized and you can navigate into it to see the influence of buildings on noise levels.

[image: _images/style_map.png]

Step 4: Change the default parameters

To produce this noise map, we used, in most of WPS scripts, default parameters (e.g the height of the source, the number of reflections, the air temperature, …). You are prompted to redo some of the previous steps by changing some of the settings. You will then be able to visually see what impact they have on the final noise map.

Note

To change optionnal parameters (the yellow boxes) just select them and fill the needed informations in the right-side menu.

[image: _images/change_parameters.png]

Step 5 (bonus): Change the directivity

In this bonus step, we will manage with the directivity. To do so, we will apply the following method:

	Get directivity

	Update the Source_Point table

	Import needed data into NoiseModelling

	Produce the noise map, taking into acount directivity parameters

Directivity

The directivity table aims at modeling a realistic directional noise source. To do so, we associate to each “Theta-Phi” pair an attenuation in dB.

	DIR_ID : identifier of the directivity sphere

	THETA : vertical angle in degrees, 0 (front), -90 (bottom), 90 (top), from -90 to 90

	PHI: horizontal angle in degrees, 0 (front) / 90 (right), from 0 to 360

	LW500 : attenuation levels in dB for 500 Hz

Each of the sound sources has its own directivity. For the exercise we will use the directivity of a train, which is provided in the file Directivity.csv [https://github.com/Universite-Gustave-Eiffel/NoiseModelling/blob/v4.0.1/Docs/data/Directivity.csv] and which you are invited to download.

Extract from the directivity table (Directivity.csv)

	DIR_ID

	THETA

	PHI

	LW500

	1

	-90

	0

	-20

	1

	-85

	0

	-20

	1

	-80

	0

	-20

	1

	-75

	0

	-20

	1

	-70

	0

	-20

	1

	-65

	0

	-20

	…

	…

	…

	…

Below is an illustration generated from train directivity formula.

[image: _images/directivity_rail.png]

Update source point table

To play with directivity, we need to add 4 fields in the source point table:

	
	Yaw

	
	Name : YAW

	Description : Source horizontal orientation in degrees. For points 0° North, 90° East. For lines 0° line direction, 90° right of the line direction.

	Type : Decimal number

	Length : 4

	
	Pitch

	
	Name : PITCH

	Description : Source vertical orientation in degrees. 0° front, 90° top, -90° bottom. (FLOAT).

	Type : Decimal number

	Length : 4

	
	Roll

	
	Name : ROLL

	Description : Source roll in degrees

	Type : Decimal number

	Length : 4

	
	Direction identififier

	
	Name : DIR_ID

	Description : Identifier of the directivity sphere from tableSourceDirectivity parameter or train directivity if not provided -> OMNIDIRECTIONAL(0), ROLLING(1), TRACTIONA(2), TRACTIONB(3), AERODYNAMICA(4), AERODYNAMICB(5), BRIDGE(6)

	Type : Integer

	Length : 2

[image: _images/yaw_pitch_roll.png]

Note

Source image: GregorDS, CC BY-SA 4.0 [https://creativecommons.org/licenses/by-sa/4.0], via Wikimedia Commons [https://commons.wikimedia.org/wiki/File:6DOF.svg]

In our example, we will update the Point_Source.geojson file to add these columns and to fill them with new information. To do so, just edit the file into a text editor and replace the following lines. Save it once done.

{ "PK": 1, "LWD500": 100.0}

by

{ "PK": 1, "LWD500": 100.0, "YAW": 45, "PITCH": 0, "ROLL": 0, "DIR_ID" : 1 }

Here we can see that the Yaw is setted to 45°. Pitch and Roll are equal to 0, and the directivity is defined as 1 and will refer to the directivy table (see below).

So your final .geojson file should look like this

{
"type": "FeatureCollection",
"name": "Point_Source",
"crs": {"type": "name", "properties": { "name": "urn:ogc:def:crs:EPSG::2154" } },
"features": [{"type": "Feature", "properties": { "PK": 1, "LWD500": 100.0, "YAW": 45, "PITCH": 0, "ROLL": 0, "DIR_ID" : 1 },
 "geometry": {"type": "Point", "coordinates": [223771.0727, 6757583.2983, 0.0]}
 }]
}

Import data

Now, in NoiseModelling we have to:

	Import the Directivy.csv file

	Reimport the Point_Source.geojson file in order to take into account the changes

	Import the dem.geojson file, which is placed here ./NoiseModelling_4.0.0/data_dir/data/wpsdata/dem.geojson. By taking into account the ground elevation, this file will help us to get better results.

To do so, just use the Import_and_Export:Import_Table WPS script.

Generate the Delaunay triangulation

Use the Receivers:Delaunay_Grid WPS script. Fill the following parameters and click on Run Process button:

	Sources table name : POINT_SOURCE

	Maximum Area : 60

	Buildings table name: BUILDINGS

	Height : 1.6

Compute noise level from source

Use the NoiseModelling:Noise_level_from_source WPS script. Fill the following parameters and click on Run Process button:

	Sources table name : POINT_SOURCE

	Buildings table name : BUILDINGS

	Receivers table name : RECEIVERS

	Ground absorption table name : GROUND_TYPE

	Source directivity table name : DIRECTIVITY

	Maximum source-receiver distance : 800

	Do not compute LDEN_GEOM table : true

	Do not compute LNIGHT_GEOM table : true

	Do not compute LEVENING_GEOM table : true

	DEM table name : DEM

Create isosurface

Use the Acoustic_Tools:Create_Isosurface WPS script. Fill the following parameters and click on Run Process button:

	Sound levels table : LDAY_GEOM

	Polygon smoothing coefficient : 0.4

Export and visualize resulting tables

Use the Import_and_Export:Export_Table WPS script to export the CONTOURING_NOISE_MAP table into a shapefile called CONTOURING_NOISE_MAP_DIRECTIVITY.

Then, load CONTOURING_NOISE_MAP_DIRECTIVITY.shp into QGIS. Apply the noisemap_style.sld style, and compare with CONTOURING_NOISE_MAP.shp produced in Step 3.

[image: _images/contouring_directivity_compare.png]

 MATSim - GUI

MATSim - GUI

Introduction

MATSim (https://matsim.org/) is an open-source framework for implementing large-scale agent-based transport simulations.
In this tutorial we will learn how to import the output of a successful MATSim simulation into NoiseModelling.
The idea is to use the traffic data from MATSim for NoiseModelling road noise emission.
Then we will leverage the fact that MATSim is a multi-agent simulator. We will import MATSim agent’s positions to calculate their noise exposition throughout the simulated day.

For this tutorial, we’ll look into a simulation of the island in the center of Nantes [https://www.openstreetmap.org/way/157597537], the 6th most populated city in France.

Prerequisites

	You need to have a working installation of the latest NoiseModelling version

	A basic knowledge of what the MATSim traffic simulator does and how it works is preferable

	(optional) A working installation of DBeaver (https://dbeaver.io/) can be useful to visualize the NoiseModelling database tables

	(optional) A working installation of Simunto Via (https://www.simunto.com/via/) can be useful for visualizing the MATSim scenario

	(optional) A working installation of QGis (https://www.qgis.org/) can be useful to visualize resulting GIS data

The data

You can download and unzip the data in any folder from here : https://github.com/Universite-Gustave-Eiffel/NoiseModelling/releases/download/v3.3.1/scenario_matsim.zip

The data folder should contain the following files :

	nantes_ile.osm.pbf : the Openstreetmap data of the area. We’ll use it to import buildings into NoiseModelling.

	network.csv : A file containing the ‘true’ geometries of the road segments (called “links” in MATSim)

	output_events.xml.gz : A file containing the list of MATSim events from the simulation.

	output_facilities.xml.gz : A file containing the list of facilities, the agent’s activity locations.

	output_network.xml.gz : A file containing the MATSim road network, a list of nodes and links.

	output_plans.xml.gz : A file containing the list of agents and their final schedule, or plan.

Step 1 : Import Buildings

The first thing we’re going to do is to import buildings.
We use the Import_OSM WPS block to do that. Simply put the nantes_ile.osm.pbf path in the ‘pathFile’ input and set the ‘SRID’ input to 2154 [https://epsg.io/2154] (which is the EPSG code for the french regulatory system).

[image: _images/osm_pbf_wps.png]

You should end up with a BUILDINGS table containing the island buildings.

[image: _images/buildings_table.png]

Step 2 : Import MATSim Traffic Data

Now we can import the traffic data from the MATSim simulation.
To do that, we use the Traffic_From_Events WPS block.

The mandatory inputs are :

	folder : the path of the MATSim folder, here it is where you put the content of the scenario_matsim.zip file

	timeSlice : wich represents the time period you want to aggregate the traffic data over. Here let’s use the “quarter” option.

One optional but very important input is the Network CSV file path. The idea is that when the MATSim scenario was run, the link geometries were simplified to save computation time.
This simplification of roads geometry is a bad thing for NoiseModelling since we take buidlings into account (simplified links can pass through buildings) and since source-receiver distance has a big impact on noise levels.
That’s why the network.csv file is given with the other data files. It contains the “real” geometry of links before MATSim simplification process (FYI, This is obtained by setting the ‘outputDetailedLinkGeometryFile’ option to a file name in the pt2matsim config file).

An other important parameter is the populationFactor. This corresponds to the downscaling factor that was used to generate the list of agents. Typically, this list of agents is generated based on the available census and survey data for an administrative area.
Here, for our use case, the MAtsim scenario and it’s agents were generated by using only 1% of the area total population (that is a population factor of 0.01).

You can explore the other options by reading their descriptions. Here we are going to set them as follows:

	Network CSV file: /path/to/your/scenario_matsim/network.csv

	Export additionnal traffic data ? : false

	Calculate All vehicles noise source ?: true

	Path of the matsim output folder: /path/to/your/scenario_matsim

	populationFactor: 0.01

	Time Quantification: quarter

	outTableName: “” (not set, use default)

	Skip unused links ?: true

	Projection identifier: 2154

	ignoreAgents: “” (not set)

[image: _images/traffic_events_wps.png]

You should end up with a MATSIM_ROADS table containing the links ids and their geometry and a MATSIM_ROADS_STATS table containing the noise power level of each link per 15 min time slice.

[image: _images/roads_table.png]

Step 3 : Import MATSim Activities

The next step consists in importing the activities locations from the MATSim simulation.In MATSim, activities are also called facilities.

Let’s use the Import_Activities WPS bloc. The inputs descriptions are quite straightforward :

	Name of created table: ACTIVITIES

	Projection identifier: 2154

	Path of MatSim facilities file: /path/to/your/scenario_mastim/output_facilities.xml.gz

[image: _images/import_activities_wps.png]

You should end up with a ACTIVITIES table containing the activities location, and few other properties.

[image: _images/activities_table.png]

Step 4 : Assign a Receiver to each Activity

Now, if you look closely, activities are placed in unorthodox locations, sometimes in the river, sometimes in buildings, etc.
This is irrelevant for a MATSim simulation but here we want to calculate noise levels, so we need properly placed receivers.

So we want to assign a properly placed receiver for every activity we imported. We do that in 2 steps :

	we calculate all the “valid” receiver positions using the Building_Grid WPS bloc

	we choose, for each activity the right receiver.

There are 2 ways to execute step 4.2. We can simply choose the closest receiver for every activity, using the Receivers_From_Activity_Closest WPS bloc.
Or we can randomly choose a receiver on the closest building of each activity using the Receivers_From_Activity_Random WPS bloc.

Here we are going to use the latter way, the random one.

Let’s calculate all the receivers around our buildings using the Building_Grid WPS bloc with the following inputs :

	Buildings table table : BUILDINGS

	Distance between receivers : 5.0

	height : 4.0

That will place receviers around all the buildings, at 4 meter high and 5 meters apart.

Now, we must use the Receivers_From_Activity_Random WPS bloc. The inputs are simple, you just have to specify the names of the previously created tables

	Name of created table: ACTIVITY_RECEIVERS

	Name of the table containing the activities: ACTIVITIES

	Name of the table containing the buildings: BUILDINGS

	Name of the table containing the receivers: RECEIVERS

[image: _images/receiver_activities_wps.png]

You should end up with a ACTIVITY_RECEIVERS table containing the new location (THE_GEOM, in blue below) as well as the orignal matsim position (ORIGIN_GEOM, in red below).
You can inspect the results to see where each activity is placed now.

[image: _images/activity_receivers_table.png]

Step 5 : Calculate Noise Attenuation Matrix

In this step, we want to calculate and store the noise propagation part of NoiseModelling.
We need this because we actually have several power spectrum for every road segment, one for every timestep of 15min.
In the end we want to have a noise map every 15 minutes (96 maps in total). If we do that directly, by calling something like Noise_level_from_source WPS bloc 96 times, we would be calculating the exact same noise propagation 96 times.

So the process is as follows :

	we generate a SOURCE table, using the MATSIM_ROADS table, where all levels are set to 0 dB.

	We use that table as input of the Noise_level_from_source WPS bloc and setting the confExportSourceId input paramter.

The confExportSourceId parameter will actually ouput, for every recevier, the list of sources that contribute to the resulting levels, with the source-receiver noise attenuation.

We’ll then use this attenuation matrix in the next steps to get the 96 noise maps.

Create the 0dB Source table

Here we’ll use the ZerodB_Source_From_Roads WPS bloc. It’s 2 inputs parameters are quite simple and should be set as follows :

	Input table name: MATSIM_ROADS

	Output table name: SOURCES_0DB

Calculate the attenuation matrix

Let’s use the previously generated table to launch our propagation calculation.

As explained before, we’ll use the Noise_level_from_source WPS bloc with the ‘confExportSourceId’ parameter enabled.
For more details about the different parameters, browse the NoiseModelling general documentation.

The parameters we will use are the following :

	Buildings table name: BUILDINGS

	Receivers table name: ACTIVITY_RECEIVERS

	Sources table name: SOURCES_0DB

	Maximum source-receiver distance: 250

	Maximum source reflexion distance: 50

	Order of reflexion: 1

	Do not compute LEVENING_GEOM table: true

	Do not compute LNIGHT_GEOM table: true

	Do not compute LDEN_GEOM table: true

	Separate receiver level by source identifier: true

	Diffraction on vertical edges: false

	Diffraction on horizontal edges: true

	Thread number: 4 (your number of available cpu core)

[image: _images/noise_from_source_wps.png]

We should end up with a table called LDAY_GEOM that contains a list of contributing source attenuation for every receiver.
We can see such a list for the receiver n°1 in the figure below:

[image: _images/lday_geom_table.png]

Step 6 : Calculate Noise Maps

We have noise power levels every 15 minutes in the MATSIM_ROADS_STATS table, and a source-receiver noise attenuation matrix in the LDAY_GEOM table.
We just need to combine the two to get receivers noise levels, noise maps, every 15 minutes.

This is the purpose of the Noise_From_Attenuation_Matrix WPS bloc.
We just have set the right tables as input as follows :

	Attenuation matrix table name: LDAY_GEOM

	Output table name: RESULT_GEOM

	Table name of the MATSIM table containing the roads LW stats per timeString: MATSIM_ROADS_STATS

	Table name of the MATSIM table containing the roads geometries: MATSIM_ROADS

[image: _images/noise_map_wps.png]

It takes some time but in the end you should get a noise spectrum for every receiver every 15 minutes in the table RESULT_GEOM.

We have our noise maps !

Visualization

Export the data

Here we’ll look at a nice way to look at the results with QGIS.

First we need to export the RESULT_GEOM table data into a Shapefile.
We’ll simply use the Export_Table WPS bloc with the following parameters :

	Name of the table: RESULT_GEOM

	Path of the file you want to export: /path/to/wherever/results.shp

[image: _images/results_export_wps.png]

View it in QGIS

Let’s go into QGIS. We are going to import 2 layers : an osm background and our results.

Note

For those who are new to GIS and want to get started with QGIS, we advise you to follow this tutorial [https://docs.qgis.org/3.22/en/docs/training_manual/basic_map/index.html] as a start.

	In Layer

 Pilot NoiseModelling with scripts

Pilot NoiseModelling with scripts

In this tutorial, we describe the different ways to pilot NoiseModelling thanks to scripts. To do so, we will use a dedicated packaging of NoiseModelling, called NoiseModelling_4.0.0_without_gui, in which the GUI has been removed (no more Geoserver and WPS Builder).

	Go to the NoiseModelling latest release page [https://github.com/Ifsttar/NoiseModelling/releases/latest]

	Download and unzip the NoiseModelling_4.0.0_without_gui [https://github.com/Ifsttar/NoiseModelling/releases/download/v4.0.0/NoiseModelling_4.0.0_without_gui.zip] file

From that point, NoiseModelling can be executed in 3 different maners:

	with simple command lines

	with Bash script

	with Groovy script

To illustrate, users are invited to reproduce the tutorial “Get Started - GUI” in command lines.

Note

This tutorial is mainly dedicated to advanced users.

Warning

The URL is here adapted to Linux or Mac users. Windows user may adapt the address by replacing / by \ and the drive name.

Requirements

Warning

For all users (Linux , Mac and Windows), please make sure your Java environment is well setted. For more information, please read the page Requirements.

1. Simple command line

Below is an example of a bash instruction, executing the Noise_level_from_traffic.groovy WPS Script (located in the directory /noisemodelling/wps/). This block has 5 arguments corresponding to the input table names (for buildings, roads, receivers, dem and ground type).

	1
2
3

	cd /home/user/NoiseModelling_4.0.0_without_gui/

./bin/wps_scripts -w ./ -s noisemodelling/wps/Import_and_Export/Import_File.groovy -pathFile resources/org/noise_planet/noisemodelling/wps/ground_type.shp

./bin/wps_scripts instruction allows to launch the wps_scripts.sh or wps_scripts.bat (depending on if you are on Linux / Mac or Windows) file, which is located in the bin/ directory.

Warning

Adapt /home/user/ address with your own situation

2. Bash script

Below is an example of a sequence of simple .groovy scripts, using bash instructions and launching the differents steps described in the “Get Started - GUI”.

	 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19

	#! /bin/bash

Run the get started turorial
https://noisemodelling.readthedocs.io/en/latest/Get_Started_Tutorial.html

Step 4: Upload files to database
create (or load existing) database and load a shape file into the database
./bin/wps_scripts -w ./ -s noisemodelling/wps/Import_and_Export/Import_File.groovy -pathFile resources/org/noise_planet/noisemodelling/wps/ground_type.shp
./bin/wps_scripts -w ./ -s noisemodelling/wps/Import_and_Export/Import_File.groovy -pathFile resources/org/noise_planet/noisemodelling/wps/buildings.shp
./bin/wps_scripts -w ./ -s noisemodelling/wps/Import_and_Export/Import_File.groovy -pathFile resources/org/noise_planet/noisemodelling/wps/receivers.shp
./bin/wps_scripts -w ./ -s noisemodelling/wps/Import_and_Export/Import_File.groovy -pathFile resources/org/noise_planet/noisemodelling/wps/ROADS2.shp
./bin/wps_scripts -w ./ -s noisemodelling/wps/Import_and_Export/Import_File.groovy -pathFile resources/org/noise_planet/noisemodelling/wps/dem.geojson

Step 5: Run Calculation
./bin/wps_scripts -w ./ -s noisemodelling/wps/NoiseModelling/Noise_level_from_traffic.groovy -tableBuilding BUILDINGS -tableRoads ROADS2 -tableReceivers RECEIVERS -tableDEM DEM -tableGroundAbs GROUND_TYPE

Step 6: Export (& see) the results
./bin/wps_scripts -w ./ -s noisemodelling/wps/Import_and_Export/Export_Table.groovy -exportPath LDAY_GEOM.shp -tableToExport LDAY_GEOM

3. Groovy script

Below is an example of a complex .groovy script, launching the differents steps described in the “Get Started - GUI”.

	 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70

	/**
 * NoiseModelling is an open-source tool designed to produce environmental noise maps
 * on very large urban areas. It can be used as a Java library or be controlled through
 * a user friendly web interface.
 *
 * This version is developed by the DECIDE team from the Lab-STICC (CNRS) and by the
 * Mixt Research Unit in Environmental Acoustics (Université Gustave Eiffel).
 * <http://noise-planet.org/noisemodelling.html>
 *
 * NoiseModelling is distributed under GPL 3 license. You can read a copy of this
 * License in the file LICENCE provided with this software.
 *
 * Contact: contact@noise-planet.org
 */

/**
 * @Author Pierre Aumond, Université Gustave Eiffel
 * @Author Nicolas Fortin, Université Gustave Eiffel
 */

import org.h2gis.api.ProgressVisitor
import org.slf4j.Logger
import org.slf4j.LoggerFactory
import java.sql.Connection

title = 'Tutorial script'
description = 'Long description of tutorial script'

inputs = []

outputs = [result: [name: 'Result output string', title: 'Result output string', description: 'This type of result does not allow the blocks to be linked together.', type: String.class]]

def runScript(connection, scriptFile, arguments) {
 Logger logger = LoggerFactory.getLogger("script")
 GroovyShell shell = new GroovyShell()
 Script scriptInstance = shell.parse(new File(scriptFile))
 Object result = scriptInstance.invokeMethod("exec", [connection, arguments])
 if(result != null) {
 logger.info(result.toString())
 }
}

def exec(Connection connection, input) {

 // Step 4: Upload files to database
 runScript(connection, "noisemodelling/wps/Import_and_Export/Import_File.groovy",
 ["pathFile":"resources/org/noise_planet/noisemodelling/wps/ground_type.shp"])

 runScript(connection, "noisemodelling/wps/Import_and_Export/Import_File.groovy",
 ["pathFile":"resources/org/noise_planet/noisemodelling/wps/buildings.shp"])

 runScript(connection, "noisemodelling/wps/Import_and_Export/Import_File.groovy",
 ["pathFile":"resources/org/noise_planet/noisemodelling/wps/receivers.shp"])

 runScript(connection, "noisemodelling/wps/Import_and_Export/Import_File.groovy",
 ["pathFile":"resources/org/noise_planet/noisemodelling/wps/ROADS2.shp"])

 runScript(connection, "noisemodelling/wps/Import_and_Export/Import_File.groovy",
 ["pathFile":"resources/org/noise_planet/noisemodelling/wps/dem.geojson"])

 // Step 5: Run Calculation
 runScript(connection, "noisemodelling/wps/NoiseModelling/Noise_level_from_traffic.groovy",
 ["tableBuilding":"BUILDINGS", "tableRoads":"ROADS2", "tableReceivers":"RECEIVERS",
 "tableDEM":"DEM", "tableGroundAbs":"GROUND_TYPE"])

 // Step 6: Export (& see) the results
 runScript(connection, "noisemodelling/wps/Import_and_Export/Export_Table.groovy",
 ["exportPath":"LDAY_GEOM.shp", "tableToExport":"LDAY_GEOM"])
}

You can find this script online here [https://github.com/Ifsttar/NoiseModelling/blob/master/wps_scripts/src/main/groovy/get_started_tutorial.groovy]

 Tutorials - FAQ

Tutorials - FAQ

Shapefiles or GeoJSON?

Shapefile [https://doc.arcgis.com/en/arcgis-online/reference/shapefiles.htm] is a file format for geographic information systems (GIS).

Its extension is classically .shp, and it is always accompanied by (at least) two other files with the same name:

	.dbf, a file that contains attribute data relating to the objects contained in the shapefile,

	.shx, file that stores the index of the geometry.

Other files can also be provided :

	.prj - coordinate system information, using the WKT (Well Known Text) format;

	.sbn and .sbx - spatial shape index;

	.fbn and .fbx - spatial shape index for read-only shapefiles;

	.ain and .aih - attribute index for active fields in a table or in a theme attribute table;

	etc.

GeoJSON [https://fr.wikipedia.org/wiki/GeoJSON] (Geographic JSON) is an open format for encoding simple geospatial data sets using the JSON (JavaScript Object Notation) standard.
It is an alternative to the Shapefile format. It has the advantage of being readable directly in a text editor.

PostGreSQL or H2?

PostgreSQL [https://www.postgresql.org/] & H2 Database [https://www.h2database.com/] are two DataBase Management Systems (DBMS). They are used to store, manipulate or manage, and share information in a database, ensuring the quality, permanence and confidentiality of the information, while hiding the complexity of the operations.
NoiseModelling can connect to DBMS in H2 - H2GIS or PostGreSQL - PostGIS format.

OSM

OpenStreetMap [https://www.openstreetmap.org/] (OSM) is a collaborative project to create a free (and open-access) editable map of the world.
The geodata underlying the map is considered the primary output of the project.
The creation and growth of OSM has been motivated by restrictions on use or availability of map data across much of the world, and the advent of inexpensive portable satellite navigation devices.
OSM is considered a prominent example of Volunteered Geographic Information (VGI).

Metric SRID

Spatial reference systems can be referred to using a SRID integer, including EPSG codes.

In several input files, you need to specify coordinates, e.g road network. It is strongly suggested not to use WGS84 coordinates (i.e. GPS coordinates - EPSG:4326). Acoustic propagation formulas make the assumption that coordinates are metric.
Many countries and regions have custom coordinate system defined, optimized for usages in their appropriate areas. It might be best to ask some GIS specialists in your region of interest what the most commonly used local coordinate system is and use that as well for your data.
If you don’t have any clue about what coordinate system is used in your region, it might be best to use the Universal Transverse Mercator coordinate system. This coordinate system divides the world into multiple bands, each six degrees width and separated into a northern and southern part, which is called UTM zones (see http://en.wikipedia.org/wiki/UTM_zones#UTM_zone for more details). For each zone, an optimized coordinate system is defined. Choose the UTM zone which covers your region (Wikipedia has a nice map showing the zones) and use its coordinate system.

Here is the map : https://upload.wikimedia.org/wikipedia/commons/e/ed/Utm-zones.jpg

Note

We recommand using the website https://epsg.io/ to find the appropriate SRID code for your location.

Primary Key

“In the design of a database table, the Primary Key (abbreviated PK) is selected among the non-empty set of candidate keys. The PK is a column (or an irreducible group of columns) able to identify every row of the table.” (Source [https://en.wiktionary.org/wiki/primary_key])

 WPS Blocks

WPS Blocks

WPS general presentation

The OGC Web Processing Service (WPS [https://www.ogc.org/standards/wps]) Interface Standard provides rules for standardizing inputs and outputs (requests and responses) for invoking geospatial processing services, such as polygon overlay, as a web service.

The WPS standard defines how a client can request the execution of a process, and how the output from the process is handled. It defines an interface that facilitates the publishing of geospatial processes and clients’ discovery of and binding to those processes.

NoiseModelling and WPS

Since release v.3.0.0, NoiseModelling comes with various WPS scripts, encapsulated in so-called blocks. These blocks, written in Groovy [https://groovy-lang.org/] language, are executed thanks to the GeoServer [https://geoserver.org/] WPS engine.

Physically stored as .groovy files (openable in any text editor), they are located in the NoiseModelling\\data_dir\\scripts\\wps\\ directory.

Tip

To know the functionality of each WPS block, wait a few moments with your mouse on the block, a tooltip text will appear.

Note

With each new version, new blocks are added. Be curious and check out the latest version!

Create your own WPS block

Please see Advanced Users Section, because now you want to be one!

 WPS Builder

WPS Builder

What is WPS Builder ?

WPS Builder allows to creates graphical process workflows that can be easily executed and reproduced. It allows Web Processing Services to operate through a user interface.

We have developed a version of WPS Builder adapted to the needs of NoiseModelling. This version being very close to the original version initially developped by former Boundlessgeo company.

Frequently Asked Question

What do the colors correspond to?

	Orange block are mandatory

	Beige blocks are optional

	Green block are unfortunately useless (not due to NoiseModelling)

	Blocks get solid border when they are ready

Can I save my WPS Builder project?

Yes. To save your WPS Builder project you two possibilities:

	Save in the local browser storage

	Export into a JSON file

1. Local browser

Click on the File icon and then choose Save to local browser storage. This way, your working environment will saved in the memory of your web browser.

Once you restart NoiseModelling, you can reload this environment by clicking on File / Open from local browser storage

2. Export into JSON

Click on the File icon and then choose Export to clipboard. In the opening panel, you have a JSON text that you can copy / paste and save into a `.txt or json file.

[image: _images/export_clipboard.png]

Once you restart NoiseModelling, you can reload this environment by clicking on File / Import clipboard. In the opening panel, paste your JSON text and click Ok.

Why everything is wrong when I use “Enter”?

Don’t click on your Enter keyboard key, it refreshes web page.

I can’t link process block between them?

It is normal… this feature has not yet been implemented!

 Create your own WPS block

Create your own WPS block

Presentation

The OGC Web Processing Service (WPS [https://www.ogc.org/standards/wps]) Standard provides rules for standardizing inputs and outputs (requests and responses) for invoking geospatial processing services as a web service.

WPS scripts for NoiseModelling are written in Groovy language. They are located in the NoiseModelling/data_dir/scripts/wps directory.

To help you build your WPS script, you will find a template in the NoiseModelling/data_dir/scripts/template directory

Note

Don’t be shy, if you think your script can be useful to the community, you can redistribute it using github or by sending it directly to us.

Tip

The best way to make your own WPS is to be inspired by those that are already made. See how the tutorial is built or contact us for many more examples.

General Structure

1. Import used libraries

import geoserver.GeoServer
import geoserver.catalog.Store

2. WPS Script meta data

title = '....'
description = '.....'

3. WPS Script input & output

inputs = [
 inputparameter1: [name: '...', description : '...', title: '...', type: String.class],
 inputparameter2: [name: '...', description : '...', title: '...', type: String.class]
]

outputs = [
 ouputparameter: [name: '...', title: '...', type: String.class]
]

4. Set connection method

def static Connection openPostgreSQLDataStoreConnection() {
 Store store = new GeoServer().catalog.getStore("h2gisdb")
 JDBCDataStore jdbcDataStore = (JDBCDataStore)store.getDataStoreInfo().getDataStore(null)
 return jdbcDataStore.getDataSource().getConnection()
}

5. Set main method to execute

def run(input) {

 // Open connection and close it at the end
 openPostgreSQLDataStoreConnection(dbName).withCloseable { Connection connection ->
 // Execute code here
 // for example, run SQL command lines
 Sql sql = new Sql(connection)
 sql.execute("drop table if exists TABLETODROP")
 }

 // print to Console windows
 return [result : 'Ok ! ']
}

 Access NoiseModelling database

Access NoiseModelling database

Introduction

NoiseModelling has been preconfigured to use H2 [https://www.h2database.com] / H2GIS [http://h2gis.org/] as the default database (to store and manage all the needed data).

This database does not need to be configured or installed on the system. It’s transparent to users.

Tip

Many spatial processing are possible with H2GIS. Please have a look to the numerous functions on the H2GIS website [http://www.h2gis.org/docs/dev/functions/].

To visualize and manage NoiseModelling data (e.g roads, buildings or landcover layers) you have the choice between the three following approaches (listed from simple to advanced):

	Use WPS blocks (inside)

	Use H2/H2GIS web client

	Use DBeaver client

1. Use WPS blocks

Once NoiseModelling UI is launched (open http://localhost:9580/ in your web browser), you can manage your data thanks to the Database_Manager WPS blocks folder (on the left side). In particular, you can do these actions:

	Add_Primary_Key: allows to add a primary key on a column of a specific layer (table)

	Clean_Database: remove all the layers (tables) from NoiseModelling (can be useful when starting a new project)

	Display_Database: list all the layers (tables) and the columns inside

	Drop_a_Table: remove the selected layer (table) from NoiseModelling

	Table_Visualization_Data: display the layer (table) as an array of values

	Table_Visualization_Map: if the layer (table) is geographic (contains geometry(ies)), display the data in a map

Below is an illustration with the Display_Database WPS block

[image: _images/nm_db_view.png]

2. Use H2/H2GIS web client

If you want to have full capabilities on visualization, edition and processing on data, you may need to connect to the database thanks to the H2/H2GIS web interface.

To do so, follow these steps:

	download the H2/H2GIS v.2.0 [https://github.com/orbisgis/h2gis/releases/download/v2.0.0/h2gis-dist-2.0.0-bin.zip] database client (which is used with NoiseModelling 4.0)

	unzip the h2gis-dist-2.0.0-bin.zip file

	in the /h2gis-standalone/ folder, double-click on the h2gis-dist-2.0.0-SNAPSHOT`.jar file to launch the web client (depending on your Operating System, you may need to allow the execution of this file)

	the H2/H2GIS web client should be opened in your default web browser (the URL looks like this http://127.0.1.1:8082/login.jsp?jsessionid=08ef3ad5d6838b614cf91b42e10bca8f)

[image: _images/h2_opening.png]

In the connexion panel, you have to specify the following informations:

	Driver Class: the driver that allows to connect to a specific database. Here we want to connect to a H2 db, so let the default value org.h2.Driver

	JDBC URL: the JDBC address of the NoiseModelling database. By default, this database is placed in here /.../data_dir/h2gisdb.mv.db. So, fill this text area with jdbc:h2:/.../data_dir/h2gisdb.mv.db.

	User name: the db user name. By default, keep the empty value

	Password: the db password. By default, keep the empty value

Warning

If you want to open the database while NoiseModelling is running, you have to add ;AUTO_SERVER=TRUE after the JDBC URL. If not, you will only be able to open the database once NoiseModelling is closed.

Below is an example, with a database located on the computer here: /home/nm_user/NoiseModelling/NoiseModelling_4.0/data_dir/h2gisdb.mv.db. We want to open the db while NoiseModelling is running.

	JDBC URL: jdbc:h2:/home/nm_user/NoiseModelling/NoiseModelling_4.0/data_dir/h2gisdb.mv.db;AUTO_SERVER=TRUE

	User name: empty

	Password: empty

[image: _images/h2_connexion_panel.png]

Warning

The URL is here adapted to Linux or Mac users. Windows user may adapt the address by replacing / by \ and the drive name.

Once done, click on Connect

In the new interface, you discover a full database manager, with the list of tables on the left side, a SQL console (where you can execute all the instructions you want, independently of NoiseModelling) and a result panel.

[image: _images/h2_db_view.png]

3. Use DBeaver client

DBeaver [https://dbeaver.io/] is a free and open-source universal SQL / database client for developers and database administrators. DBeaver is able (among others) to connect to H2 [https://www.h2database.com]/H2GIS [http://h2gis.org/] database or to PostgreSQL [https://www.postgresql.org/]/PostGIS [https://postgis.net/].

You can download DBeaver on this webpage [https://dbeaver.io/download/].

Connect DBeaver to your database

	Run DBeaver

	Add a new connection

	If you use a H2GIS type databse, please select H2GIS embedded (use the search engine to filter)

	Point the database path by clicking on Browse By default the database is placed in the NoiseModelling/data_dir directory and is named h2gisdb.mv.db.

	In the Path text area, remove .mv.db at the end of the address

	If you want to open the database while NoiseModelling is running, add ;AUTO_SERVER=TRUE at the end of the path (you should have something like this /home/nm_user/NoiseModelling/NoiseModelling_4.0/data_dir/h2gisdb;AUTO_SERVER=TRUE)

	Click on Terminate to open your dabatase!

[image: _images/dbeaver_new_connection.png]

Warning

If you are using a version of DBeaver prior to 22.0.4, the interface may ask you to Save instead of Opening the existing db. Once you click on Save, a panel will warns you that h2gisdb.mv.db already exists and will ask you if you want to Cancel or Replace : click on Replace.

Now you can use the full potential of DBeaver and the H2GIS database. You can explore, display and manage your database.

[image: _images/dbeaver_buildings.png]

 Use NoiseModelling with a PostGIS database

Use NoiseModelling with a PostGIS database

Introduction

NoiseModelling is distributed with GeoServer [http://geoserver.org/]. This application has been preconfigured to use H2GIS [http://h2gis.org/] as the default database.

H2GIS does not need to be configured or installed on the system and is therefore perfectly suitable as a default database.

However, you may want to connect NoiseModelling to a PostgreSQL [https://www.postgresql.org/]/PostGIS [https://postgis.net/] database (this option may be interesting especially if you are using huge datasets (e.g on large area)).

That is why NoiseModelling has been written with the idea of maintaining the H2GIS/PostGIS compatibility.

This tutorial will not cover the steps for installing and configuring a PostGIS database.

Connect with Java

First you have to add some libraries. We will use PostgreSQL/PostGIS wrapper available in the H2GIS library:

	 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45

	<?xml version="1.0" encoding="UTF-8"?>
<project xmlns="http://maven.apache.org/POM/4.0.0" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:schemaLocation="http://maven.apache.org/POM/4.0.0 http://maven.apache.org/maven-v4_0_0.xsd">
 <properties>
 <h2gis-version>2.1.0-SNAPSHOT<</h2gis-version>
 <noisemodelling-version>4.0.0</noisemodelling-version>
 </properties>
 <dependencies>
 <dependency>
 <groupId>org.slf4j</groupId>
 <artifactId>slf4j-simple</artifactId>
 <version>1.7.12</version>
 </dependency>
 <dependency>
 <groupId>org.orbisgis</groupId>
 <artifactId>noisemodelling-emission</artifactId>
 <version>${noisemodelling-version}</version>
 </dependency>
 <dependency>
 <groupId>org.orbisgis</groupId>
 <artifactId>noisemodelling-propagation</artifactId>
 <version>${noisemodelling-version}</version>
 </dependency>
 <dependency>
 <groupId>org.orbisgis</groupId>
 <artifactId>h2gis</artifactId>
 <version>${h2gis-version}</version>
 </dependency>
 <dependency>
 <groupId>org.orbisgis</groupId>
 <artifactId>h2gis-api</artifactId>
 <version>${h2gis-version}</version>
 </dependency>
 <dependency>
 <groupId>org.orbisgis</groupId>
 <artifactId>h2gis-utilities</artifactId>
 <version>${h2gis-version}</version>
 </dependency>
 <dependency>
 <groupId>org.orbisgis</groupId>
 <artifactId>postgis-jts-osgi</artifactId>
 <version>${h2gis-version}</version>
 </dependency>
 </dependencies>
</project>

The new dependency here is postgis-jts-osgi. It contains some code to convert PostGIS geometries objects into/from JTS [https://github.com/locationtech/jts] objects.

In your code you have to import the PostGIS wrapper class and some utility class:

	 1
 2
 3
 4
 5
 6
 7
 8
 9
10

	import org.h2gis.functions.io.geojson.GeoJsonRead;
import org.h2gis.postgis_jts_osgi.DataSourceFactoryImpl;

import java.net.ConnectException;
import java.sql.Connection;
import java.sql.ResultSet;
import java.sql.SQLException;
import java.sql.Statement;
import java.util.HashSet;
import java.util.Locale;

Then use it to connect to you local or remote PostGIS database and obtain a valid JDBC connection object:

	 1
 2
 3
 4
 5
 6
 7
 8
 9
10

	 public static void main() throws Exception {
 DataSourceFactoryImpl dataSourceFactory = new DataSourceFactoryImpl();
 Properties p = new Properties();
 p.setProperty("serverName", "localhost");
 p.setProperty("portNumber", "5432");
 p.setProperty("databaseName", "postgres");
 p.setProperty("user", "postgres");
 p.setProperty("password", "");
 try(Connection connection = SFSUtilities.wrapConnection(dataSourceFactory.createDataSource(p).getConnection())) {
 Statement sql = connection.createStatement();

Finally you can use the NoiseModelling functions as usual:

	 1
 2
 3
 4
 5
 6
 7
 8
 9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160

	package org.noise_planet.nmtutorial01;

import org.h2gis.api.EmptyProgressVisitor;
import org.h2gis.api.ProgressVisitor;
import org.h2gis.functions.io.csv.CSVDriverFunction;
import org.h2gis.functions.io.geojson.GeoJsonRead;
import org.h2gis.postgis_jts_osgi.DataSourceFactoryImpl;
import org.h2gis.utilities.SFSUtilities;
import org.junit.Test;
import org.noise_planet.noisemodelling.emission.jdbc.LDENConfig;
import org.noise_planet.noisemodelling.emission.jdbc.LDENPointNoiseMapFactory;
import org.noise_planet.noisemodelling.propagation.ComputeRaysOut;
import org.noise_planet.noisemodelling.propagation.IComputeRaysOut;
import org.noise_planet.noisemodelling.propagation.RootProgressVisitor;
import org.noise_planet.noisemodelling.propagation.jdbc.PointNoiseMap;
import org.postgresql.util.PSQLException;
import org.slf4j.Logger;
import org.slf4j.LoggerFactory;

import java.net.ConnectException;
import java.sql.Connection;
import java.sql.ResultSet;
import java.sql.SQLException;
import java.sql.Statement;
import java.util.HashSet;
import java.util.Locale;
import java.util.Properties;
import java.util.Set;

import static org.junit.Assert.assertEquals;
import static org.junit.Assert.assertTrue;

public class Main {
 static Logger LOGGER = LoggerFactory.getLogger(Main.class);

 public static void main() throws Exception {
 DataSourceFactoryImpl dataSourceFactory = new DataSourceFactoryImpl();
 Properties p = new Properties();
 p.setProperty("serverName", "localhost");
 p.setProperty("portNumber", "5432");
 p.setProperty("databaseName", "postgres");
 p.setProperty("user", "postgres");
 p.setProperty("password", "");
 try(Connection connection = SFSUtilities.wrapConnection(dataSourceFactory.createDataSource(p).getConnection())) {
 Statement sql = connection.createStatement();

 // Clean DB

 sql.execute("DROP TABLE IF EXISTS BUILDINGS");
 sql.execute("DROP TABLE IF EXISTS LW_ROADS");
 sql.execute("DROP TABLE IF EXISTS RECEIVERS");
 sql.execute("DROP TABLE IF EXISTS DEM");

 // Import BUILDINGS

 LOGGER.info("Import buildings");

 GeoJsonRead.readGeoJson(connection, Main.class.getResource("buildings.geojson").getFile(), "BUILDINGS");

 // Import noise source

 LOGGER.info("Import noise source");

 GeoJsonRead.readGeoJson(connection, Main.class.getResource("lw_roads.geojson").getFile(), "lw_roads");
 // Set primary key
 sql.execute("ALTER TABLE lw_roads ADD CONSTRAINT lw_roads_pk PRIMARY KEY (\"PK\");");

 // Import BUILDINGS

 LOGGER.info("Import evaluation coordinates");

 GeoJsonRead.readGeoJson(connection, Main.class.getResource("receivers.geojson").getFile(), "receivers");
 // Set primary key
 sql.execute("ALTER TABLE receivers ADD CONSTRAINT RECEIVERS_pk PRIMARY KEY (\"PK\");");

 // Import MNT

 LOGGER.info("Import digital elevation model");

 GeoJsonRead.readGeoJson(connection, Main.class.getResource("dem_lorient.geojson").getFile(), "dem");

 // Init NoiseModelling
 PointNoiseMap pointNoiseMap = new PointNoiseMap("buildings", "lw_roads", "receivers");

 pointNoiseMap.setMaximumPropagationDistance(160.0d);
 pointNoiseMap.setSoundReflectionOrder(0);
 pointNoiseMap.setComputeHorizontalDiffraction(true);
 pointNoiseMap.setComputeVerticalDiffraction(true);
 // Building height field name
 pointNoiseMap.setHeightField("HEIGHT");
 // Point cloud height above sea level POINT(X Y Z)
 pointNoiseMap.setDemTable("DEM");
 // Do not propagate for low emission or far away sources.
 // error in dB
 pointNoiseMap.setMaximumError(0.1d);

 // Init custom input in order to compute more than just attenuation
 // LW_ROADS contain Day Evening Night emission spectrum
 LDENConfig ldenConfig = new LDENConfig(LDENConfig.INPUT_MODE.INPUT_MODE_LW_DEN);

 ldenConfig.setComputeLDay(true);
 ldenConfig.setComputeLEvening(true);
 ldenConfig.setComputeLNight(true);
 ldenConfig.setComputeLDEN(true);

 LDENPointNoiseMapFactory tableWriter = new LDENPointNoiseMapFactory(connection, ldenConfig);

 tableWriter.setKeepRays(true);

 pointNoiseMap.setPropagationProcessDataFactory(tableWriter);
 pointNoiseMap.setComputeRaysOutFactory(tableWriter);

 RootProgressVisitor progressLogger = new RootProgressVisitor(1, true, 1);

 pointNoiseMap.initialize(connection, new EmptyProgressVisitor());

 // force the creation of a 2x2 cells
 pointNoiseMap.setGridDim(2);

 // Set of already processed receivers
 Set<Long> receivers = new HashSet<>();
 ProgressVisitor progressVisitor = progressLogger.subProcess(pointNoiseMap.getGridDim()*pointNoiseMap.getGridDim());
 LOGGER.info("start");
 long start = System.currentTimeMillis();

 // Iterate over computation areas
 try {
 tableWriter.start();
 for (int i = 0; i < pointNoiseMap.getGridDim(); i++) {
 for (int j = 0; j < pointNoiseMap.getGridDim(); j++) {
 // Run ray propagation
 IComputeRaysOut out = pointNoiseMap.evaluateCell(connection, i, j, progressVisitor, receivers);
 }
 }
 } finally {
 tableWriter.stop();
 }
 long computationTime = System.currentTimeMillis() - start;
 logger.info(String.format(Locale.ROOT, "Computed in %d ms, %.2f ms per receiver",
 computationTime,computationTime / (double)receivers.size()));
 // Export result tables as csv files
 CSVDriverFunction csv = new CSVDriverFunction();
 csv.exportTable(connection, ldenConfig.getlDayTable(), new File(ldenConfig.getlDayTable()+".csv"), new EmptyProgressVisitor());
 csv.exportTable(connection, ldenConfig.getlEveningTable(), new File(ldenConfig.getlEveningTable()+".csv"), new EmptyProgressVisitor());
 csv.exportTable(connection, ldenConfig.getlNightTable(), new File(ldenConfig.getlNightTable()+".csv"), new EmptyProgressVisitor());
 csv.exportTable(connection, ldenConfig.getlDenTable(), new File(ldenConfig.getlDenTable()+".csv"), new EmptyProgressVisitor());
 } catch (PSQLException ex) {
 if (ex.getCause() instanceof ConnectException) {
 // Connection issue ignore
 LOGGER.warn("Connection error to local PostGIS, ignored", ex);
 } else {
 throw ex;
 }
 } catch (SQLException ex) {
 LOGGER.error(ex.getLocalizedMessage(), ex.getNextException());
 throw ex;
 }
 }
}

 Get Started

Get Started

	If not already done, create an account on Github [https://github.com/],

	Go to the official NoiseModelling repository: https://github.com/Universite-Gustave-Eiffel/NoiseModelling

	There are 4 main librairies:

	noisemodelling-emission : to determine the noise emission

	noisemodelling-jdbc : to connect NoiseModelling to a database

	noisemodelling-pathfinder : to determine the noise path

	noisemodelling-propagation : to calculate the noise propagation

	Enjoy & feel free to contact us!

 Noise Map Color Scheme

Noise Map Color Scheme

Below are presented some color schemes used to colorize noise isophones, produced in the CONTOURING_NOISE_MAP layer.

[image: _images/illustration_banner.png]

Note

If you want to feed this list with other schemes, please contact us (see Support page).

Introduction

Creation of the Isosurfaces

NoiseModelling can produce isophones (also called isosurfaces) thanks to the Acoustic_Tools:Create_Isosurface script. In this script, an optionnal parameter called Iso levels in dB allows the user to specify the thresholds used to generate the surfaces.

[image: _images/contouring_noise_map.png]

By default, the thresholds are 35, 40, 45, 50, 55, 60, 65, 70, 75, 80, 200. In the resulting CONTOURING_NOISE_MAP layer, these values are then converted into integer and stored in the ISOLVL column. The first threshold is equal to 0. The second one is equal to 1 … (See table below).

Correspondence between default thresholds and ISOLVL values

	Threshold

	ISOLVL

	ISOLABEL

	35

	0

	<35

	40

	1

	35-40

	45

	2

	40-45

	50

	3

	45-50

	55

	4

	50-55

	60

	5

	55-60

	65

	6

	60-65

	70

	7

	65-70

	75

	8

	70-75

	80

	9

	75-80

	200

	10

	>80

Warning

So the ISOLVL values directly depends on the Iso levels in dB thresholds. When applying a style (see below), you must check that this parameter feets with the classes defined in the .sld file.

SLD file

For each of the color schemes presented below, a cartographic style, following the “Style Layer Descriptor [https://www.ogc.org/standards/sld]” formalism, is provided as an .sld file.
This .sld file can be loaded in many GIS applications, such as QGIS [https://qgis.org/]. The classification is made on the ISOLVL column, in the CONTOURING_NOISE_MAP table.

Note

For those who are new to GIS and want to get started with QGIS, we advise you to follow this tutorial [https://docs.qgis.org/3.22/en/docs/training_manual/basic_map/index.html] as a start.

To know how to load an .sld file, you can also consult the NoiseModelling tutorial Noise Map from Point Source - GUI in the section “Step 3 - Apply a color palette adapted to acoustics”

French NF S31-130

The “NF S31-130 [https://www.boutique.afnor.org/fr-fr/norme/nf-s31130/acoustique-cartographie-du-bruit-en-milieu-exterieur-elaboration-des-cartes/fa151801/32365]” is the standard currently in force in France.

	French title: “Acoustique Cartographie du bruit en milieu extérieur Élaboration des cartes et représentation graphique”

	English title: “Acoustics - Cartography of outside environment noise - Drawing up of maps and graphical representation”

	Last update: 2008

Color scheme

[image: _images/style_nf_s_31_130.png]

SLD file

The SLD representation of this color scheme is available here : Style NF S31-130 [https://github.com/Universite-Gustave-Eiffel/NoiseModelling/blob/v4.0.2/Docs/styles/style_nf_s31-130.sld]

Warning

This style will work only if you specified Iso levels in dB = 45, 50, 55, 60, 65, 70, 75, 200 when exectuting the Acoustic_Tools:Create_Isosurface script

German DIN 18005-2:1991

The “DIN 18005-2:1991 [https://www.beuth.de/de/norm/din-18005-2/1741135]” is the standard currently in force in Germany.

	German title: “Schallschutz im Städtebau; Lärmkarten; Kartenmäßige Darstellung von Schallimmissionen”

	English title: “Noise abatement in town planning; noise maps; graphical representation of noise pollution”

	Last update: 1991

Color scheme

[image: _images/style_din_18005-2.png]

SLD file

The SLD representation of this color scheme is available here : Style DIN 18005-2:1991 [https://github.com/Universite-Gustave-Eiffel/NoiseModelling/blob/v4.0.2/Docs/styles/style_din_18005-2.sld]

Warning

This style will work only if you specified Iso levels in dB = 35, 40, 45, 50, 55, 60, 65, 70, 75, 80, 200 when exectuting the Acoustic_Tools:Create_Isosurface script

Italian Normativa tecnica UNI 9884

The “Normativa tecnica UNI 9884 [https://www.beuth.de/de/norm/din-18005-2/1741135]” is a standard currently used in Italy.

	Italian title: “Acustica. Caratterizzazione acustica del territorio mediante la descrizione del rumore ambientale”

	English title: “Acoustics. Acoustic characterisation of the territory through the description of environmental noise”

	Last update: 1991

Color scheme

Norma UNI 9884 - Convenzioni per la rappresentazione delle mappe di rumore

	Zone di rumore dB(A)

	Colore

	Sotto 35

	Verde chiaro

	Da 35 a 40

	Verde

	Da 40 a 45

	Verde scuro

	Da 45 a 50

	Giallo

	Da 50 a 55

	Ocra

	Da 55 a 60

	Arancione

	Da 60 a 65

	Vermiglio

	Da 65 a 70

	Carminio

	Da 70 a 75

	Rosso violetto

	Da 75 a 80

	Blu

	Sopra 80

	Blu scuro

We can see that the thresholds and colors defined in the table above are the same values as the ones defined in “German DIN 18005-2:1991”.

SLD file

Since this norm is almost the same as “German DIN 18005-2:1991”, you are invited to use the German SLD file, available here : Style DIN 18005-2:1991 [https://github.com/Universite-Gustave-Eiffel/NoiseModelling/blob/v4.0.2/Docs/styles/style_din_18005-2.sld]

Warning

This style will work only if you specified Iso levels in dB = 35, 40, 45, 50, 55, 60, 65, 70, 75, 80, 200 when exectuting the Acoustic_Tools:Create_Isosurface script

Coloring Noise

The “Coloring Noise [https://www.coloringnoise.com/theoretical_background/new-color-scheme/]” scheme is a proposition made by Beate Tomio, within her PhD.

	English title: Coloring Noise - A color scheme for visualizing noise immission in maps

	Description: The creation process of this color scheme is presented on Beate’s website [https://www.coloringnoise.com/]

	Last update: 2016

Color scheme

[image: _images/style_beate_tomio.png]

SLD file

The SLD representation of this color scheme is available here : Style Coloring Noise [https://github.com/Universite-Gustave-Eiffel/NoiseModelling/blob/v4.0.2/Docs/styles/style_beate_tomio.sld]

Warning

This style will work only if you specified Iso levels in dB = 35, 40, 45, 50, 55, 60, 65, 70, 75, 80, 200 when exectuting the Acoustic_Tools:Create_Isosurface script

Create your own .SLD file

The .sld is an .xml file that may be opened and edited in most of the text editor. So you can easily modify existing .sld files to feet with your needs.

SLD structure

An .sld file is made of rules (<se:Rule>). A rule has a name (<se:Name>), a description (<se:Title>) and is applied on some specific values (Filter) and for one symbol.

Filter

The rule is applied:

	thanks to an operator that indicates how to filter the table values. In the example below PropertyIsEqualTo indicates that an equality test will be made to select values. If the value in the column match with the one defined in the rule, the object (geometry) will be selected to apply the rule.

	on a specific column : <ogc:PropertyName>. In the example below, ISOLVL. If the column does not exist in the table or if the name is not written exactly in the same way, your rule will not work.

	for a specific value : <ogc:Literal>. In the example below, 1. So for each objetcs that have 1 in the column ISOLVL the rule will be applied

Symbol

For one rule, we can define how the symbol will be displayed. In our case, the symbol is a polygon (the isosufrce). In the SLD langage, a polygon is called a PolygonSymbolizer. This object has two main caracteristics:

	
	The fill<se:Fill>

	
	a color, exprimed with an hexadecimal code. In the example below, #a0bbbf [https://www.color-hex.com/color/a0bbbf]

	
	The stroke<se:Stroke>

	
	a color, exprimed with an hexadecimal code. In the example below, #a0bbbf [https://www.color-hex.com/color/a0bbbf] (we choosed to have the same color for fill and stroke for esthetic purpose, but you can change it)

	a width (stroke-width). In the example below, 1

	a stroke-linejoin option that defines how two segments may join. bevel is the default option

Below is an extraction from an .sld file that illustrates all these points seen before.

<se:Rule>
 <se:Name>35-40</se:Name>
 <se:Description>
 <se:Title>35-40</se:Title>
 </se:Description>
 <ogc:Filter xmlns:ogc="http://www.opengis.net/ogc">
 <ogc:PropertyIsEqualTo>
 <ogc:PropertyName>ISOLVL</ogc:PropertyName>
 <ogc:Literal>1</ogc:Literal>
 </ogc:PropertyIsEqualTo>
 </ogc:Filter>
 <se:PolygonSymbolizer>
 <se:Fill>
 <se:SvgParameter name="fill">#a0bbbf</se:SvgParameter>
 </se:Fill>
 <se:Stroke>
 <se:SvgParameter name="stroke">#a0bbbf</se:SvgParameter>
 <se:SvgParameter name="stroke-width">1</se:SvgParameter>
 <se:SvgParameter name="stroke-linejoin">bevel</se:SvgParameter>
 </se:Stroke>
 </se:PolygonSymbolizer>
</se:Rule>

 Support

Support

If you are having trouble with NoiseModelling, you can contact the NoiseModelling team through the following channels:

	open an issue on Github : https://github.com/Universite-Gustave-Eiffel/NoiseModelling/issues

	write a message on Github : https://github.com/Universite-Gustave-Eiffel/NoiseModelling/discussions

	send us an email at contact@noise-planet.org

We warmly encourage you to choose options 1 or 2 because they have the merit of being public and can therefore benefit the community.

If you have more “private” issue, or if you don’t have any knowledge with Github, emails are welcome !

 License

License

NoiseModelling and its documentation are distributed under GPL v3 [https://www.gnu.org/licenses/gpl-3.0.html] license and are jointly developed by the Joint Research Unit in Environmental Acoustics (UMRAE [https://www.umrae.fr/], Université Gustave Eiffel - Cerema) and the DECIDE team from the Lab-STICC [https://labsticc.fr] (CNRS).

 Glossary

Glossary

Below are defined some terms or acronyms used in this documentation:

	LAeq : A-weighted Leq sound level.

	Lday : LAeq during the day (6h-18h)

	Lden : LAeq over a whole day (day-evening-night)

	Leq : equivalent continuous sound level (in dB) having the same total sound energy as the fluctuating level measured

	Levening : LAeq during the evening (18h-22h)

	Lnight : LAeq during the night (22h-6h)

 Index

Index

_images/style_din_18005-2.png
Color scheme for DIN 18005-2:1991 (Germany)

Level (dB) RGB HEX
[] <=35 183,206,142 #B7CESE
B >35-40 29,132, 53 #1D8435
Bl >%0-45 14, 76, 60 #0E4C3C
[] »45-50 236, 215, 33 #ECD721
B >50-55 159, 111, 44 #9F6F2C
I >55-60 239, 121, 38 #EF7926
Bl -c60-65 199, 25, 50 #C71932
Bl s5-70 141, 26, 39 #8D1A27
B >70-75 136, 73, 123 #88497B
Bl >75-80 24,85, 140 #18558C
B 0 19, 67,103 #134367

_images/style_map.png

_images/save_geojson.png
Sauvegarder la couche temporaire

Format. GeoJSON -

Nom de fichier |/home/gpetit/Point_Source.geojsor .

Nom de la couche

Encodage

v Options de la couche

(COORDINATE_PRECISION | 15
RFC7946 NO

WRITE_BBOX NO

» Options personnalisables

©annuler

_images/style_beate_tomio.png
Color scheme vs5.b by Beate Tomio
(www.coloringnoise.com)

Level (dB) RGB HEX

[>30-35 | 130,166,173 #82A6AD
>35-40 | 160,186,191 #AOBABF

>40 - 40 184, 214, 209 #B8D6D1

>45 - 50 206, 228, 204 #CEE4CC

>50 - 55 226, 242, 191 #E2F2BF

>55 - 60 243,198, 131 #F3C683
>60 - 65 232,126, 77 #E87EAD

>65-70 205, 70, 62 #CD463E
>70-75 161, 26, 77 #A11A4D
>75 - 80 117, 8, 92 #75085C

>80 67,10, 74 #430A4A

_images/style_nf_s_31_130.png
Color scheme for NF S 31-130 (2008) (France)

Level (dB) RGB HEX
- <45 72,201,1 #48C901
- 45 -50 83,254, 0 #53FE00
- 50 - 55 182, 254, 116 #B6FE74
- 55-60 255, 254, 2 #FFFEO2
- 60 - 65 255, 168, 0 #FFA800
- 65-70 253,0,0 #FD0000
- 70-75 207, 3, 253 #CFO3FD
- >75 146, 1, 103 #920167

_images/style_scale.png
Propriétés de la couche — CONTOURING_NOISE_MAP — Symbologie

 Ensemble de régles -

“ [Etiquette Régle Echelle min. _Echelle max. Compte Nombre ¢
v W inf.35 ISOLVL =0
v [35-40 ISOLVL = 1
v\ 4045 1SOLVL=2
vl 4550 1SOLVL =3
vl 5055 1SOLVL =4
v [5560 ISOLVL =5
v M 60-65 ISOLVL = 6
v 1SOLVL=7

1SOLVL=8
1SOLVL=9
1SOLVL = 10

& Niveaux de symbole...
Jointures
» Rendu de couche
a Stockage
< uxili = @Appliquer | @Annuler || @oK

_images/roads_propagation.png
Propagation

Road points are projected on DEM to get Z

'
v

Road is now well placed in Z

_images/roads_table.png
h2gisdb.mv.dt PUBLIC

Ha

@
&

© spatial

%
6y, %
| Ties © Esri — Esri, DeLorme, NAVTEQ, TomTom, Intermap, PC, USGS, FAO, NPS, NRCAN, GeoBase, Kadastér NL, Ordnance Survey, Esri Japan, METI, Esri China

(Hong Kong). and the GIS User Communiy
M ™ & v EPSG2154 v B ESRITopoMap v = @&

_images/roads_banner.png

_images/roads_emission.png
ROADS input layer Emission

without Z (LW_ROADS)
& ° Zsource = 0.05
"
© 0
whinZ 7 0 sea level

nav.xhtml

 Table of Contents

 		
 NoiseModelling v4.0 User Guide

 		
 Architecture

 		
 1. NoiseModelling libraries

 		
 2. Database connection

 		
 3. NoiseModelling with a GUI

 		
 4. NoiseModelling with command lines

 		
 5. Docker Setup

 		
 Available versions

 		
 Numerical Model

 		
 Emission Numerical Model

 		
 Road traffic emission model

 		
 Rail traffic emission model

 		
 Without emission model

 		
 Path finding algorithm

 		
 Propagation Numerical Model

 		
 Validation

 		
 Acoustic model validation

 		
 Implementation validation

 		
 Scientific production

 		
 Standard Noise maps

 		
 Dynamic Noise maps

 		
 Probabilistic & Multi-sources Noise maps

 		
 Sensitivity Analysis & data assimilation

 		
 Auralisation

 		
 Buildings

 		
 Table definition

 		
 Geometry modelling

 		
 Z coordinate deduction

 		
 1. The geometry has no Z coordinate

 		
 2. The geometry has a Z coordinate

 		
 Ray path

 		
 Case 1 : there is no roof

 		
 Case 2 : Zobject is on the gutter level

 		
 Case 3 : Zobject is on top ot the roof

 		
 Case 4 : Complex roof shape

 		
 Topology

 		
 Roads

 		
 Table definition

 		
 Geometry modelling

 		
 Emission

 		
 Propagation

 		
 Railways

 		
 Railways sections

 		
 Table definition

 		
 Geometry modelling

 		
 Railways traffic

 		
 Table definition

 		
 Ground surfaces

 		
 Table definition

 		
 Topology

 		
 DEM

 		
 Table definition

 		
 DEM enrichment

 		
 Directivity

 		
 Table definition

 		
 Receivers

 		
 Table definition

 		
 Parameters

 		
 Maximum area

 		
 Maximum cell size

 		
 Road width

 		
 Height

 		
 Acoustic parameters

 		
 Probability of occurrences

 		
 Relative humidity

 		
 Air temperature

 		
 Order of reflexion

 		
 Diffraction on horizontal edges

 		
 Diffraction on vertical edges

 		
 Maximum source-receiver distance

 		
 Maximum source-reflexion distance

 		
 Wall absorption coefficient

 		
 Separate receiver level by source identifier

 		
 Thread number

 		
 Requirements

 		
 Java environment

 		
 Windows

 		
 Linux or Mac

 		
 Get Started - GUI

 		
 Step 1: Download NoiseModelling

 		
 Step 2: Start NoiseModelling GUI

 		
 Step 3: Open NoiseModelling GUI

 		
 Step 4: Load input files

 		
 Step 5: Run Calculation

 		
 Step 6: Export (& see) the results

 		
 Step 7: Know the possibilities

 		
 Noise Map from OSM - GUI

 		
 Prerequisites

 		
 Step 1: Get OSM data

 		
 Download OSM data

 		
 Import to the database

 		
 Step 2: Visualize OSM data

 		
 With NoiseModelling GUI

 		
 With H2 or DBeaver client

 		
 Export tables into files

 		
 Step 3: Generate a Receiver table

 		
 Step 4: Associate emission noise level with roads

 		
 Step 5: Source to Receiver Propagation

 		
 Step 6: Create Isosurfaces map

 		
 Step 7: View the result

 		
 Export

 		
 View

 		
 Noise Map from Point Source - GUI

 		
 Step 1: Create the source point

 		
 Load data into QGIS

 		
 Initialize the source point layer

 		
 Add a new source point

 		
 Step 2: Import input data in NoiseModelling

 		
 Step 3: Generate the noise map

 		
 Create the receivers grid

 		
 Calculate noise levels

 		
 Generate noise level isosurfaces

 		
 Apply a color palette adapted to acoustics

 		
 Step 4: Change the default parameters

 		
 Step 5 (bonus): Change the directivity

 		
 Directivity

 		
 Update source point table

 		
 Import data

 		
 Generate the Delaunay triangulation

 		
 Compute noise level from source

 		
 Create isosurface

 		
 Export and visualize resulting tables

 		
 MATSim - GUI

 		
 Introduction

 		
 Prerequisites

 		
 The data

 		
 Step 1 : Import Buildings

 		
 Step 2 : Import MATSim Traffic Data

 		
 Step 3 : Import MATSim Activities

 		
 Step 4 : Assign a Receiver to each Activity

 		
 Step 5 : Calculate Noise Attenuation Matrix

 		
 Create the 0dB Source table

 		
 Calculate the attenuation matrix

 		
 Step 6 : Calculate Noise Maps

 		
 Visualization

 		
 Export the data

 		
 View it in QGIS

 		
 Pilot NoiseModelling with scripts

 		
 Requirements

 		
 1. Simple command line

 		
 2. Bash script

 		
 3. Groovy script

 		
 Tutorials - FAQ

 		
 Shapefiles or GeoJSON?

 		
 PostGreSQL or H2?

 		
 OSM

 		
 Metric SRID

 		
 Primary Key

 		
 WPS Blocks

 		
 WPS general presentation

 		
 NoiseModelling and WPS

 		
 Create your own WPS block

 		
 WPS Builder

 		
 What is WPS Builder ?

 		
 Frequently Asked Question

 		
 What do the colors correspond to?

 		
 Can I save my WPS Builder project?

 		
 Why everything is wrong when I use â��Enterâ��?

 		
 I canâ��t link process block between them?

 		
 Create your own WPS block

 		
 Presentation

 		
 General Structure

 		
 1. Import used libraries

 		
 2. WPS Script meta data

 		
 3. WPS Script input & output

 		
 4. Set connection method

 		
 5. Set main method to execute

 		
 Access NoiseModelling database

 		
 Introduction

 		
 1. Use WPS blocks

 		
 2. Use H2/H2GIS web client

 		
 3. Use DBeaver client

 		
 Connect DBeaver to your database

 		
 Use NoiseModelling with a PostGIS database

 		
 Introduction

 		
 Connect with Java

 		
 Get Started

 		
 Noise Map Color Scheme

 		
 Introduction

 		
 Creation of the Isosurfaces

 		
 SLD file

 		
 French NF S31-130

 		
 Color scheme

 		
 SLD file

 		
 German DIN 18005-2:1991

 		
 Color scheme

 		
 SLD file

 		
 Italian Normativa tecnica UNI 9884

 		
 Color scheme

 		
 SLD file

 		
 Coloring Noise

 		
 Color scheme

 		
 SLD file

 		
 Create your own .SLD file

 		
 SLD structure

 		
 Support

 		
 License

 		
 Glossary

_images/NoiseModelling_banner.png
NoiseModelling

_images/Tutorial1_display_db.png
» Run Pr

Q iilter

Acoustic_Tools

Add_Laeq Leq_columns

Create_Isosurface

Database_Manager v

'Add_Primary _Key

Clean_Database

Display_Database

Drop_a_Table

Table_Visualization Data

Table_Visualization_Map

Experimental v

Cars_Dynamic_map
Dynamic_map
Get_Rayz

Multi_Runs

Noise_Map_Difference

[Road Emission From AADF
Road_Emission_From TMJA

Builder | [XML |

Inputs Console

\Projection identifier o1

fame of created table

[BUILDINGS
PK S
THE_GEOM
ID_WAY
HEIGHT

[DEM
THE_GEOM
HEIGHT

IGROUND_TYPE
PK S
THE_GEOM
ID_WAY
SURF_CAT
G

[RECEIVERS
PK S
THE_GEOM

[ROADS
THE_GEOM
PK &
OSM_ID
VD

TVE

TVN

HV_D

HVE

HV N

LV SPD_D
LV_SPD_E
LV_SPD N
HV_SPD_D
HV_SPD_E
HV_SPD_N
PYMT

_images/Tutorial1_nm_open.png
» Run Pro

e buder | [L]

Acoustic_Tools v

Add_Laeq Leq_columns

Create_Isosurface

Database_Manager v

'Add_Primary _Key

Clean_Database

Display_Database

Drop_a_Table

Table_Visualization Data

Table_Visualization_Map

Experimental v

Cars_Dynamic_map

Dynamic_map.

Get_Rayz

Multi_Runs

N

e Map_Difference

[Road Emission From AADF
[Road_Emission From TMJj

Experimental Matsim v

‘Agent_Exposure

Tmport_Activities

_images/Tutorial1_Image1bis.gif
=PWPS BUILDER

T S L[| s

Drone_Dynarmic_map

Dynamic_map

Import_Symuia

Multi_Runs

From_AADF)

Road_Emiss

Road_Emission_From_TMJA

Import_and_Export v

Export_Table
Import_File
Import_Folder
NoiseModelling v

Lday_from _Traffic

Lden_from_Road_Emission

Road_Emission_from_Trafic

Others_Tools v

‘Add_Laeq_Leq_columns

OsmTolnputData.

_images/Tutorial1_ImageLast.gif
WPS BUILDER

Q fiter Builder I | [inputs || console

| [calculation Dane 1 The table LDAY_GEOM has been created

Road_Emission_From_AADF

Road_Emission_From_TMJA
Import_and_Export v
Export_Table
Import_File
Import_Folder
NoiseModelling v

Lday_from _Trafic

Lden_from_Road_Emission

Road_Emission_from_Trafic

Others_Tools v

‘Add_Laeq_Leq_columns

OsmTolnputData

Receivers 2

_images/acoustics_parameters_confFavorableOccurrences.png
confFavorableOccurrences

05,05,05,05, 05,075,075, 05,05,0.25,025,075,075,075,1,1

_images/acoustics_parameters_confMaxReflDist.png

_images/Tutorial2_ContouringNoiseMap.png

_images/acoustics_parameters_banner.png

_images/activities_table.png
== ACTIVITI

== Propriétés ¥ Données Diag % hagisdb.mv.db [PUBLIC

Ha

T Texte

NG
@ <10\ 4

| Thes © Esri — Esfi, Dellrme, NAVTEQ, TomTom, Itsiap, PG, USGS, FAO, NPS, NRCAN, GeoBase, Kadaster NL, Ordnance Survey, Esrl Japan, METI, Esri China
(Hong Kong). and the GIS User Communty

EPSG:2154 ~ M ESRITopoMap v = @&

_images/activity_receivers_table.png
ACTIVITY_RECEIVERS
Propri ¥ Données ;i ER Diagram 2gisdb.mv.db [PUBLIC B Tab

»

o &P

Bras de ggmit

g
card

Leaflet| Ties © Esri — Esri, DeLorme, NAVTEQ, TomTom, Intermap, iPC, USGS, FAD, NPS, NRCAN, GeoBase, Kadaster N, Ordnance Survey, Esri Japan, METI,
(Hong Kong). and the GIS User Communty

EPSG:2154 v M ESRITopoMap ~

_images/acoustics_parameters_confMaxSrcDist.png

_images/building_case_1.png
Height

SeaLevel = Om

LObject
X

Zcround
Y

\a

_images/building_case_2.png
Height

_images/architecture.png
NoiseModelling with Docker

@ docker

NoiseModelling with a GUI

& GeoServer

'WPS Groovy scripts\

via

HTTP requests

Web client

NoiseModelling with command line

NoiseModelling libraries I

NoiseModelling
JDBC

NoiseModelling
Emission

\

NoiseModelling ~_,
Pathfinder

NoiseModelling
Propagation

Database
&
-
S—t

_images/building_banner.png

_images/building_topology.png
BB

s

|||||
.

_images/building_case_3.png
Height

£Object
X

_images/building_case_4.png
Height

£Object
X

_images/buildings_table.png
= BUILDINGS
== Propriétés ¥ Données Diag ¥ h2gisdb.mv.db PUBLIC Tables v #8 BUILDINGS

A

Ea

T Texte

&

4,
- or,. G
| Thes © Esri — Esri, DeLorme, NAVTEQ, TomTom, Intermap, IPC, USGS, FAO, NPS, NRCAN, GeoBase, Kadastai NL, Gidnance Survey, Esri Japan, METI, Esri China

(Hong Kong). and the GIS User Communiy
EPSG:2154 ~ M ESRITopoMap v = @&

_images/change_parameters.png
(Example with temperature)

[| Coomee)

g o ngeecomi st e o

contTempersure opona)

f

Here enter the
temperature you want

_images/building_z_z_h.png
: Height

Seal evel = Om

_images/building_zground.png
Initial geometry Geometry after correction

X:220000 X:220 004
Y: 6300000 Y : 6300000
Z:153 Z:153

ZObject = 153

ZGround = 150
ox

X220 000 X:220004

Y : 6300000 Y:6300000'\

7150 7150

_images/contouring_noise_map.png
Builder XML Inputs.

‘Separation of sound levels for isosurfaces.

Default value : 35.0,40.0,45.0,50.0,55.0,60.0,65.0,70.0,75.0,80.0,200.0

IsoClass (optional)

_images/convert_point_source_geojson.png
= £ \amac hamaTe Echelle et visil

Couches
Ao TE-BE

Point_Source
v/ — roads

V! [| buildings

v/ [ground_type

lité de la couche...

SCR de la couche: >

& Convertir en couche permanente...

Ajouter des notes de couch

Propriétés...

_images/contouring.png
[y
@ GeoPackage
/ spatiaLite
@ postais
#: SAP HANA

» MssQL

— B waimac hamaTe

Couches
YdeTa-BAO

© RECEIVERS
v/ ® Point_Source

=[]

v/ — roads
v/ buildings
ground_type

1
98

99

100
101
102
103
104
105
106
107
108
109
110
111
112

99
100
101
102
103
104
105
106
107
108
109
110
111
112

CELL_ID

" Montrer toutes les entités

<

© o oo o oo oo oo oo oo

[
ISOLVL

TEe
ISOLABEL

0<35
0<35

0<35

0<35

0<35

135-40
135-40
135-40
135-40
2 40-45
3 4550
4/50-55,
5 5560
6 60-65

7 6570

CONTOURING_NOISE_MAP — Total des entité

_images/contouring_directivity_compare.png
Isosurfaces, without directivity Isosurfaces, with directivity

_images/create_source_point_layer.png
Nouvelle couche temporaire en mémoire

Nom de la couche |Point_Source
Type de géométrie | . Point -
Vv Inclure la dimensionZ | Inclure les valeurs M
EPSG:2154-RGF93 v1 / Lambert-93

Nouveau champ

Nom

Type |::2Nombre décimal M

Liste des champs.

Nom Type Longueur _ Précision

PK integer 2
LWD500 double 5 2

Attention: Les couches temporaires en mémoire ne sont pas
sauvegardées et seront supprimées a la fermeture de QGIS.

©aide ©annuler

_static/comment-close.png

_images/dbeaver_buildings.png
DBeaver 22.0.2 - BUILDINGS _

e

¢ e 0

 Navigateur de bases de donn... X Projets

6w -

~ Pah2gisdb.mv.db

PUBLIC
~ M Tables
> B ACTIVITIES
> BB ACTIVITY_RECEIVERS
> BBUILDINGS
> B8 CONTOURING_NOISE_MAP
> S DEM
> ®GROUND
> #8 GROUND_TYPE
> B LDAY_GEOM
> E8LDEN_GEOM
> BLEVENING_GEOM
> B LNIGHT_GEOM
> BLW_ROADS
> B MATSIM_ROADS
> B MATSIM_ROADS_STATS
> EBRECEIVERS
> ERESULT_GEOM
> BROADS
> ESROADS2
> 8 SOURCES_0DB
> EBSPATIAL_REF_SYS
> FATRIANGLES,

M Project- General X ® -+

DataSource

Appliquer (commit) |* Retour arriére (rollback)

=]

> BBookmarks
> B ER Diagrams
> Bscripts

@ i Auo iea e

= @
1] <hagisdb.mv.db>Script1 | = BUILDINGS x = @

5 Propriétés B Données i ER Diagram % hagisdb.mv.db [PUBLIC B Tables = BUILDINGS

= 15 Entrez une expression SQL pour filtrer les résultats (utilisez Ctrl+Espace)
o 1%PK Ti| I THE GEOM T1| “HEIGHT TI g visionneuse de valeurs x Bl
5| 1_|32488638 POLYGON ((354646.32192938763 6688417.756708291, 354676.7327420; 53678746 B
[2_| 53770760 POLYGON ((356628.2203681336 6688596.868469686, 356703.08658353 2956501 2
355501876 POLYGON ((354021.86213061924 6687784.61214247, 354038.58020682' 5.3323383 g
£ 74| 55501877 POLYGON ((354143.2342571994 6687903.605128552, 354140.78377845, 9.353525
© 5 [55501880 POLYGON ((354025.29913503333 6687739.384514195, 353992.0016241° 5.958452 22
% 6| 55501882 POLYGON ((354101.62125696253 6687862.179100998, 354099.6748893(43017635 -]
— 7_|55501883 POLYGON ((354179.59283786634 6687922.282108705, 354137.5679098! 4.3154545 ™
% 8 |55502540 [POLYGON((354333.72686572286/6687874,898016739,354339,8488516 4.1049266 ®
&9_]55502542 | POLYGON ((354355.03567377984 6687865.376286365, 354354.82285481 47383027 =
© 10 | 55502543 POLYGON ((354405.616714433 6687733.548489166, 354340.654146852! 4.353626
11 | 55502544 POLYGON ((354323.6450705199 6687878.654598452, 354333.89328989! 4.5161605
12 | 55502545 POLYGON ((354350.6751002839 6687794.409226868, 354351.49041148 55198326
13 | 55502546 POLYGON ((354403.90154923836 6687860.543494139, 354403.6083705¢ 4.3777742
14 | 55594620 POLYGON ((354329.01281537366 6687902.332050573, 354419.0946019! 4047431 uTonkin
15 | 55596228 POLYGON ((354771.15865527984 6687692.5533700595, 354768.329332(51278367
16 | 55596231 POLYGON ((354884.77030183555 6687738.320266507, 354884.7205112(58286066
A7 | 57179779 POLYGON ((355393.31644594343 6687799.26710385, 3540188671140« 5.5585
18 | 57179787 POLYGON ((355403.9708569759 6687838.639653156, 355404.45579707 4.899425
19 | 57179792 POLYGON ((355452.0145835367 6687845.600951911, 355418.95888194« 5578262
20 | 57179794 POLYGON ((355436.4059101797 6687930.12677256, 355439.033011273; 4969032
21 | 57179795 POLYGON ((355368.9126864685 6687793.722443313, 355374.54272730; 57559404
o 22| 57179796 POLYGON ((355394.5242999592 6687821.449750358, 355394.45009953¢ 5.482518
S 23 | 57179797 POLYGON ((355369.5730899367 6687814.612723804, 355369.08183720 4310293
& 24 | 57179803 POLYGON ((355275.6772177076 6687718.72037186, 355272.732096518 5.853841
57179805 POLYGON ((355400.59860156494 6687813.7557349, 355402.764604848« 5.0337906
® save H Cancel [Script K< > L i
= 200 row(s) fetched - 11ms (8ms fetch), on juin 14, 14:57:00 ©®

) Taches enarriére plan R Problémes x
0 éléments

SR O T ‘ e ‘ Chemin d'a((és‘ zmplmnq Type

CET frFR}

_static/down-pressed.png

_static/comment.png

_static/down.png

_images/traffic_events_wps.png
Q filter

Agent Exposure

Tmport_Activities

Receivers_From_Activilies_CIds:
Receivers_From_Activilies_Ra

("Sources_From TimeString |

Geometric_Tools.

(Change SRID)

Builder

L[xme |

Export additionnal traffc data ? ©

_images/table_receivers.png

_static/ajax-loader.gif

_images/yaw_pitch_roll.png
Back

Qg

Down

_static/comment-bright.png

_images/directivity_banner.png
0
330 30 120

60
300, 60 150 30
270 %0 180 o
240 120 210 330
210 150 240 300

180 270

_images/directivity_rail.png
500 Hz

0 90
330 v 30 120 . 60
300" TN 150 .30
270 180 0
240\) 2100 . 330
210 150 240 300
180 270

Discrete directivity Horizontal Discrete directivity Side

_images/dem_banner.png

_images/dem_enrichment.png

_images/fill_attributes.png
Point_Source - Attributs d'entités

LWD500 |90

_images/ground_clc_banner.jpg

_images/edit_layer_source.png
Projet
DEERR®

L LAY ALY N

Explorateur o8
LeYte

- Marque-pages
» I signets spatiaux
> @ Accuell

=y

@ Geopackage

/# spatiaLite

® postais

5P HANA

Zoomer sur la(les) couche(s)

| buidings
v W groundtype | 3 mntrer dans lapersy

Afficher le nombre d'entités
= Afficher les étiquettes
Copier la Couche
Renommer la couche
 Mettre 4 jour la couche SQL...
3 Dupliquer la couche
L supprimerla couche
Déplacer en bas

T sasculer en mode

_images/export_clipboard.png
NoiseModelling 3.4.4

(¢)

Export to clipboard

@ Nodes:

{TYPE_NAME""OWS_1_1_0.LanguageStringType","value""R
esult output string"},"literalOutput”:

{TYPE_NAME""WPS_1_0_0 LiteralOutputType"}jJ},‘inputs:2
loiseModelling:Noise_level_from_source
rty":true}] 4

Selectthe text above and copy to the clipboard.

Ok Cancel

_images/h2_connexion_panel.png
Save Setings:

Seting Name: [Generc H2 (Embedded) | save] emove |
Driver Class: [arg 2 Drver]
JIDBC URL: [iaoc:h2:momeinm_useriNoiseModeliingNoiseModeing|

I —
A —

_images/symbology_results_qgis.png
Graduated -

Value 12 LEQA (e

symbol o -

Legend format %1 - %2 Precision4 2| v/ Trim

Method Color v

colorramp | T B]
Classes | istogram

DV symbol _~ Values Legend B

v 10,000000 - 15,000000 10-15

Diagrams

15,000000 - 20,000000 15 - 20
20,000000 - 25,000000 20 -25
25,000000 - 30,000000 25 - 30
30,000000 - 35,000000 30-35
35,000000 - 40,000000 35 - 40
40,000000 - 45,000000 40 - 45
45,000000 - 50,000000 45 - 50
50,000000 - 55,000000 50 - 55
55,000000 - 60,000000 55 - 60
60,000000 - 65,000000 60 - 65
65,000000 - 70,000000 65 - 70

SRR RS
»eo0000000000 e

Mode | [Equal Interval - Classes |14 =
» | Ssymmetric Classification
Classify | & = Delete All Advanced -

V! Link class boundaries

» Layer Rendering
_ | @Help Style - @Apply || @cancel

_images/style_sld.png
B

Envegiteresiyle.
Envegtrerpardéfaut
Restaurer e stle por défaut

Aouter
Renommer lacue.

_images/table_list_NM.png
[BUILDINGS
o’

THe ceom

1oLviAY

HeiGHT

|oROUND_TYPE
[
THE_GEOM
1D_ViAY.
SURF_CAT
B

[poiT_source
THE_GEOM.

KB

w500

foros
P

THe_ceom

I

DAy

SIS KoM

pres

_images/table_contouring.png

_images/dbeaver_new_connection.png
Selectionner le type de nouvell

Créer un nouvelle connexion

connexion

Créer une nouvelle connexion. Si vous ne voyez pas votre base de données dans la liste
Vous pouvez créer un nouveau pilote dans le gestionnaire.

All
Popular
®sqL
NosQL
™ Analytical

h2

@ | sortby: OTitle ® Score

H2GIS
Embedded

Test de la connexion....

H2 H2 H2Server H2GIS Server
Embedded Embedded V.
2

<retour | suivant> [Annuler][Terminer

_images/layer_source.png
Couches.
YBeTE-BADL
Point_Source

|| buildings
[ground_type

_images/lday_geom_table.png
== LDAY_GEOM

== Propriétés % Données i ER Diagram P& hgisdb.mv.db PUBLIC B Tables v = LDAY_GEOM

A cron B IDRECEIVER 3 E A D vi v v

K "4 IDSOURCE T! [5) THE_GEOM Ti 7iHze3 Vi 127Hz125 Vi 129Hz250 Ti 12iHzs00 Vi 13H ¥y
= 246 POINT (357227.92005% 36,5 E 37,08 37,57 g
H2 | 1 247 POINT (357227.92005: 365 E 37,08 37,57 H

3| 1 372 POINT (357227.92005: 33,67 33,7 33,77 33,89 g
£a] 1 409 POINT (357227.92005: 33,06 33,09 33,16 33,28
Es | 1 727 POINT (357227.92005: 22,44 22,45 22,47 22,5 22
e | 1 1102 POINT (357227.920051 24,05 24,05 24,08 24,12 -]
— 1 1133 POINT (357227.92005: 37,36 37,39 37,47 37,62
S8 | 1 1136 POINT (357227.92005: 3717 372 373 37,45 ®
&9 | 1 1140 POINT (357227.92005: 34,85 34,88 34,96 3511 =
© 10 1 1142 POINT (357227.92005: 31,61 31,64 31,73 31,87
2 —
5|
& —1

®

@ save B Cancel [Script

= 10 ligne(s) ramenées - 9ms

_images/illustration_banner.png
v/ [l inf. 35 ISOLVL =0

v [3540 ISOLVL = 1

IS v 40-45 ISOLVL = 2

v 4550 ISOLVL = 3

v, 50-55 ISOLVL = 4

v | 5560 ISOLVL =5

“Fi11">#a0bbbT- v [60-65 ISOLVL = 6
P v/ [l 65-70 ISOLVL=7

1 v [l 70-75 ISOLVL =8

v [l 75-80 ISOLVL=9

v [sup. 80 ISOLVL = 10

_images/import_activities_wps.png
Q fiter Builder L[xme

Road_Emission_From_TWJA

i

xperimental_Matsim v

Agent Exposure

Tmport_Activities

loise_From_Atienuation_Miatrjx

e

Receivers_From_Activilies_Ra

("Sources_From TimeString |

Traffic_From_Events.

eometric_Tools v

Change_SRID

Clean_ Buildings Table a

_images/noise_from_source_wps.png
Q filter

Tmport_Fi
Tmport_Foider
Tmport OSM

Tmport_Symuvia

z

loiseModelling v

Noise_level_from_source

Noise_level_from_traffic
Road_Emission_from_Traffic

(Traffic_Probabilistic_Modeling|

Receivers v

Defaunay_Grid

Builder

[xme |

_images/noise_map_wps.png
Q filter

[—

Experimental_ Matsim v

Agent Exposure

("Sources_From TimeString |

Traffic_From_Events.

Geometric_Tools. v

Change_SRID

Clean_Buildings_Table

Builder

[xme

_images/load_data_qgis.png
*Projet sans titre — QGIS
Projet Editer Vue Couche Préférences Extensions Vecteur Raster Basededonnées Internet Maillage Iraitement Aide

DERRRY U¢PLANPI Qi KatOR K-8 -5 AEXIE = -
R@VismE B / . T QaR 2

Explorateur CE]
QRY®e

¢ Marque-pages c
» [signets spatiaux
» @l Accueil
=y

@ GeoPackage

/ spatiaLite

@ postais

#: SAP HANA

» MssQL
~ @ WMS/WMTS
Couches. a®
¢ @ e T o - =}

v/ — roads

v/ [buildings
v [ground_type

Q Taper pour trouver (Ctrl+K)

Coordonnée | 2239096758389 | ¥ Echelle | 1:8282 ~ | & Loupe|100% BE

_images/nm_db_view.png
elling 3.4.4

= I

+

O D localhost

=PWPS BUILDER

Q filter

Acoustic_Tools v
Add_Laeq Leq_columns

Create_Isosurface

Database_Manager v

'Add_Primary _Key

Clean_Database

Display_Database

Drop_a_Table

Table_Visualization Data

Table_Visualization_Map

Experimental

Cars_Dynamic_map
Dynamic_map

Get_Rayz

Multi_Runs

Noise_Map_Difference
Road Emission From AADF

Builder | [XML 1

[mputs

|| Console

[BUILDINGS
PK
THE_GEOM
HEIGHT

[BUILDINGS_SCREENS
THE_GEOM
ID_BAT
BAT_UUEID
HEIGHT
POP
AGGLO
G
ORIGIN
ERPS
PK A

CBS_A R LD _FRK14
THE_GEOM

PK

UUEID

PERIOD
NOISELEVEL
AREA

CBS_A R LN_FRK14
THE_GEOM

PK

UUEID

PERIOD
NOISELEVEL
AREA

CBS_C R LD_FRK14
THE_GEOM

_images/h2_db_view.png
+

D localhost

00 s

3 Idbc:n2:momelgpetiiNoiseModel | Run | Run Selected| | Auto complete] | Ciear| SQL statement:

I BUILDINGS - SELECT ALL THE BUILDINGS

[BUILDINGS_SCREENS | 5| £CT * FROM BUILDINGS]
[CBS_A R_LD_FRK14

% Auto commit 0 70 | Max rows: (1000 v " | Auto complete [Off v | Autoselect [On v | @

I CBS A RN FRKI4 |- Gount the number of buildings higher than 5 meters
[CBS_C_R_LD_FRK14 SELECT COUNT(*) as nb_hight FROM BUILDINGS WHERE HEIGHT>5;
[CBS_C_R_LN_FRK14
5 CONF
=] CONF_RAIL
=] CONF_ROAD Zi
S 0EM - SELECT ALL THE BUILDINGS
I GROUND 'SELECT * FROM BUILDINGS;
g :_SAOV\H:CROE:ER PK [THE_GEOM HEIGHT
o ocous 70150 [POLYGON (LRI 717810, RO o OO, A0 7 1, 1 TR O 41 90115, 24735 41 953 saouz
S T PO (L EASIOWOOIO? 73818, oA 11051, L PP B 0585, SOOI 7 10147 1 o027 5158) i
I LW_ROADS 89766314 | POLYGON ((-1.6292388000000002 47.1789914, -1.6291562000000002 47.179035000000006, -1.6292226 47.1790929, -1.629321 47.17900950000001, -1.6292388000000002 47.1789914)) 4335486
£ METADATA 89766385 |POLYGON (-1 6280641 47. 1784015, -1 6279624000000001 47.178392, -1.6279399 47.1784952, -1 6280400 47 1785057, -1 6280641 47 1784018)) 59645476
21 PLATEFORM 89766392 | POLYGON ((-1.6318219 47.180651100000006, -1 6317245 47.1806068, -1 6316768000000001 47.1806532, -1.631771 47.180696700000006, -1 6318219 47.180651100000006)) 50315332
SraL secTons o877 POLYcON (L OO0 &7 7975352570 1 19082165509 T 730005004 79704, L O0WOTT 47355721 g
Syl Tot50 [POLYGON (1201224 7SI 25 47 15k, GO 7 TS, L A 1 75071z 4 IO etz
] RECEIVERS_BUILDING 89766787 | POLYGON ((-1.6233237 47.179748200000006, -1.6232907 47.179842300000004, -1.6233671 47.179849100000006, -1 6233669000000002 47.1797532, -1.6233237 47.179748200000006)) 5.462378
5] RECEIVERS_DELAUNAY. 89766915 |POLYGON ((-1.6289574 47.1781208, -1.6289049000000002 47.1780732, -1.6287527000000002 47.178114300000004, -1.6288323 47.178186200000006, -1.6289574 47.1781208)) 51754994
5 REF_EXPO_NOISELEVEL 39766034 |POLYGON ((-L.6227795 47.1785257, -1.6226901 47.178406900000006, -1.6225562 47.178453700000006, -1 6227012 47.178553, -1.6227795 47.1785257)) 5.654642
Sros o1 [POLYGON (L GEBOOOIE 738015, GOt 5000630 130000, 23757 T BT, RO 47 90y a9
B ey [P77212 |POLYGON (162007 7 1RO 12150001 o 154,625 94, 2Z5OUODL 7 T, 1G0T 7 TEAOOWO0) i
[SPATIAL_REF_SYS 89767299 |POLYGON ((-1.6324971000000001 47. 1780525, -1 6322554 47.1780672, -1 6322964000000002 47.178130200000005, -1 6324971000000001 47.1780525)) 24123025
[TRIANGLES_DELAUNAY 89767346 |POLYGON ((-1.6243651000000001 47.179051900000005, -1.6245548 47.1789879, -1.6245649000000002 47.1788335, -1.6242871 47.1788973, -1.6243651000000001 47.179051900000005)) 4.800789
5 zoNE 89767430 | POLYGON ((-1.6322023 47.1803095, -1.6321035000000002 47.180370700000005, -1.6322985 47.180497:300000006, -1.6323284 47.1804785, -1.6322023 47.1803095)) 4425812
o EOMETIY COMNNS o oo 100822 47 SOORAOIO, 1 23O 7 o108, 1725000 7750535, 2511 7 OO0, 112822 7 TR0 o
o 31840 [POLYGON (L 25100OL” 7 709, - 6220024 TP LSOOI 77851, L Ao o7 70351 z5aBomoo 47750y st
o 9767543 POLYGON (16502530 47 105121600 41 TGORT000O0%, 16345547 76047, -150253 4 70912 s
® H214.197 (2018-03-18) 89767688 | POLYGON ((-1.6263688 47.180351800000004, -1.6263634 47.1802986, -1.6262645 47.1803029, -1.6262683 47.180356200000006, -1.6263688 47.180351800000004)) 4979831
376711 POV (L2157 TGO, 29206 71145 2350 711155, oSOt 7 7o, 752154 7 TBAoONO) s
7740 [POLYGON (176152071025, 1026100 41 10734, ZSSAIOOOOT 4 SOOI 72O, 621575 41 57 bouezs

89767795 |POLYGON ((-1.6321241000000002 47.1799948, -1.6321013000000002 47.179974, -1.6320714 47.1800201, -1.6321005000000002 47.1800294, -1.6321241000000002 47.1799948)) 42210853

_images/h2_opening.png
Console H2

O B 127011

(Engish

Configuration enregistrée: | Generic H2 (Embedded)

'Nom de configuration: Generic H2 (Embedded) Enregistrer | Supprimer

Options Outls Aide

Piote JDBC: [orgn2river]

URL 0BG [berz:homelgpeitaseodeing eisebodeing 3.

R
e

‘Connecter| | Test de connexion

_images/receivers_banner.png

_images/receivers_maxArea.png
maxArea = 500 maxArea = 2500

_images/ray_tracing.png

_images/receiver_activities_wps.png
Q filter

Geometric_Tools. v

Builder

[xme

Change_SRID

Clean_Buildings_Table

Export_Table

Tmport_Fi

_images/results_export_wps.png
Q filter

Change_SRID

(" Clean Buildings Table

Set_Height

(ZerodB_Source_From_Roads|

Import_and_Export v

Export_Table
Tmport_Asc_File
Tmport_File
Tmport_Foider

Tmport OSM

Tmport_Symuvia

NoiseModeling v

Builder

L[xme

_images/receivers_maxCellDist.png

_images/results_10h_qgis.png
RS
Nowoi. 7 4l
amxf.z\\

o0 “‘c"‘ P &
]v Lo s
i1 g

o a8 T

_static/up.png

_static/minus.png

_static/file.png

_static/plus.png

_static/up-pressed.png

_images/place_point_source.png
LLAYAY N

L
Explorateur
Qevyte
¢ Marque-pages

» 7 signets spatiaux
» @ Accuell

_images/rails_banner.png

_images/osm_pbf_wps.png
Q fiter Builder [x